x uchun yechish (complex solution)
x=-\frac{\sqrt{3}i}{2}\approx -0-0,866025404i
x=\frac{\sqrt{3}i}{2}\approx 0,866025404i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x=\frac{2}{3}x\times 2x+\frac{2}{3}x\times 9-5x+1
\frac{2}{3}x ga 2x+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x=\frac{2}{3}x^{2}\times 2+\frac{2}{3}x\times 9-5x+1
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x=\frac{2\times 2}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
\frac{2}{3}\times 2 ni yagona kasrga aylantiring.
x=\frac{4}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
x=\frac{4}{3}x^{2}+\frac{2\times 9}{3}x-5x+1
\frac{2}{3}\times 9 ni yagona kasrga aylantiring.
x=\frac{4}{3}x^{2}+\frac{18}{3}x-5x+1
18 hosil qilish uchun 2 va 9 ni ko'paytirish.
x=\frac{4}{3}x^{2}+6x-5x+1
6 ni olish uchun 18 ni 3 ga bo‘ling.
x=\frac{4}{3}x^{2}+x+1
x ni olish uchun 6x va -5x ni birlashtirish.
x-\frac{4}{3}x^{2}=x+1
Ikkala tarafdan \frac{4}{3}x^{2} ni ayirish.
x-\frac{4}{3}x^{2}-x=1
Ikkala tarafdan x ni ayirish.
-\frac{4}{3}x^{2}=1
0 ni olish uchun x va -x ni birlashtirish.
x^{2}=1\left(-\frac{3}{4}\right)
Ikki tarafini -\frac{3}{4} va teskari kasri -\frac{4}{3} ga ko‘paytiring.
x^{2}=-\frac{3}{4}
-\frac{3}{4} hosil qilish uchun 1 va -\frac{3}{4} ni ko'paytirish.
x=\frac{\sqrt{3}i}{2} x=-\frac{\sqrt{3}i}{2}
Tenglama yechildi.
x=\frac{2}{3}x\times 2x+\frac{2}{3}x\times 9-5x+1
\frac{2}{3}x ga 2x+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x=\frac{2}{3}x^{2}\times 2+\frac{2}{3}x\times 9-5x+1
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x=\frac{2\times 2}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
\frac{2}{3}\times 2 ni yagona kasrga aylantiring.
x=\frac{4}{3}x^{2}+\frac{2}{3}x\times 9-5x+1
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
x=\frac{4}{3}x^{2}+\frac{2\times 9}{3}x-5x+1
\frac{2}{3}\times 9 ni yagona kasrga aylantiring.
x=\frac{4}{3}x^{2}+\frac{18}{3}x-5x+1
18 hosil qilish uchun 2 va 9 ni ko'paytirish.
x=\frac{4}{3}x^{2}+6x-5x+1
6 ni olish uchun 18 ni 3 ga bo‘ling.
x=\frac{4}{3}x^{2}+x+1
x ni olish uchun 6x va -5x ni birlashtirish.
x-\frac{4}{3}x^{2}=x+1
Ikkala tarafdan \frac{4}{3}x^{2} ni ayirish.
x-\frac{4}{3}x^{2}-x=1
Ikkala tarafdan x ni ayirish.
-\frac{4}{3}x^{2}=1
0 ni olish uchun x va -x ni birlashtirish.
-\frac{4}{3}x^{2}-1=0
Ikkala tarafdan 1 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{4}{3}\right)\left(-1\right)}}{2\left(-\frac{4}{3}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{4}{3} ni a, 0 ni b va -1 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\frac{4}{3}\right)\left(-1\right)}}{2\left(-\frac{4}{3}\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{\frac{16}{3}\left(-1\right)}}{2\left(-\frac{4}{3}\right)}
-4 ni -\frac{4}{3} marotabaga ko'paytirish.
x=\frac{0±\sqrt{-\frac{16}{3}}}{2\left(-\frac{4}{3}\right)}
\frac{16}{3} ni -1 marotabaga ko'paytirish.
x=\frac{0±\frac{4\sqrt{3}i}{3}}{2\left(-\frac{4}{3}\right)}
-\frac{16}{3} ning kvadrat ildizini chiqarish.
x=\frac{0±\frac{4\sqrt{3}i}{3}}{-\frac{8}{3}}
2 ni -\frac{4}{3} marotabaga ko'paytirish.
x=-\frac{\sqrt{3}i}{2}
x=\frac{0±\frac{4\sqrt{3}i}{3}}{-\frac{8}{3}} tenglamasini yeching, bunda ± musbat.
x=\frac{\sqrt{3}i}{2}
x=\frac{0±\frac{4\sqrt{3}i}{3}}{-\frac{8}{3}} tenglamasini yeching, bunda ± manfiy.
x=-\frac{\sqrt{3}i}{2} x=\frac{\sqrt{3}i}{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}