( x ( 100 - x ) = 500
x uchun yechish
x=20\sqrt{5}+50\approx 94,72135955
x=50-20\sqrt{5}\approx 5,27864045
Grafik
Baham ko'rish
Klipbordga nusxa olish
100x-x^{2}=500
x ga 100-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
100x-x^{2}-500=0
Ikkala tarafdan 500 ni ayirish.
-x^{2}+100x-500=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-100±\sqrt{100^{2}-4\left(-1\right)\left(-500\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 100 ni b va -500 ni c bilan almashtiring.
x=\frac{-100±\sqrt{10000-4\left(-1\right)\left(-500\right)}}{2\left(-1\right)}
100 kvadratini chiqarish.
x=\frac{-100±\sqrt{10000+4\left(-500\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-100±\sqrt{10000-2000}}{2\left(-1\right)}
4 ni -500 marotabaga ko'paytirish.
x=\frac{-100±\sqrt{8000}}{2\left(-1\right)}
10000 ni -2000 ga qo'shish.
x=\frac{-100±40\sqrt{5}}{2\left(-1\right)}
8000 ning kvadrat ildizini chiqarish.
x=\frac{-100±40\sqrt{5}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{40\sqrt{5}-100}{-2}
x=\frac{-100±40\sqrt{5}}{-2} tenglamasini yeching, bunda ± musbat. -100 ni 40\sqrt{5} ga qo'shish.
x=50-20\sqrt{5}
-100+40\sqrt{5} ni -2 ga bo'lish.
x=\frac{-40\sqrt{5}-100}{-2}
x=\frac{-100±40\sqrt{5}}{-2} tenglamasini yeching, bunda ± manfiy. -100 dan 40\sqrt{5} ni ayirish.
x=20\sqrt{5}+50
-100-40\sqrt{5} ni -2 ga bo'lish.
x=50-20\sqrt{5} x=20\sqrt{5}+50
Tenglama yechildi.
100x-x^{2}=500
x ga 100-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x^{2}+100x=500
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+100x}{-1}=\frac{500}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{100}{-1}x=\frac{500}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-100x=\frac{500}{-1}
100 ni -1 ga bo'lish.
x^{2}-100x=-500
500 ni -1 ga bo'lish.
x^{2}-100x+\left(-50\right)^{2}=-500+\left(-50\right)^{2}
-100 ni bo‘lish, x shartining koeffitsienti, 2 ga -50 olish uchun. Keyin, -50 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-100x+2500=-500+2500
-50 kvadratini chiqarish.
x^{2}-100x+2500=2000
-500 ni 2500 ga qo'shish.
\left(x-50\right)^{2}=2000
x^{2}-100x+2500 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-50\right)^{2}}=\sqrt{2000}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-50=20\sqrt{5} x-50=-20\sqrt{5}
Qisqartirish.
x=20\sqrt{5}+50 x=50-20\sqrt{5}
50 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}