Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+9x-7-5
9x ni olish uchun 3x va 6x ni birlashtirish.
x^{2}+9x-12
-12 olish uchun -7 dan 5 ni ayirish.
factor(x^{2}+9x-7-5)
9x ni olish uchun 3x va 6x ni birlashtirish.
factor(x^{2}+9x-12)
-12 olish uchun -7 dan 5 ni ayirish.
x^{2}+9x-12=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-9±\sqrt{9^{2}-4\left(-12\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-9±\sqrt{81-4\left(-12\right)}}{2}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81+48}}{2}
-4 ni -12 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{129}}{2}
81 ni 48 ga qo'shish.
x=\frac{\sqrt{129}-9}{2}
x=\frac{-9±\sqrt{129}}{2} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{129} ga qo'shish.
x=\frac{-\sqrt{129}-9}{2}
x=\frac{-9±\sqrt{129}}{2} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{129} ni ayirish.
x^{2}+9x-12=\left(x-\frac{\sqrt{129}-9}{2}\right)\left(x-\frac{-\sqrt{129}-9}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-9+\sqrt{129}}{2} ga va x_{2} uchun \frac{-9-\sqrt{129}}{2} ga bo‘ling.