Omil
\left(x-\left(-2\sqrt{7}-6\right)\right)\left(x-\left(2\sqrt{7}-6\right)\right)
Baholash
x^{2}+12x+8
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+12x+8=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-12±\sqrt{12^{2}-4\times 8}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{144-4\times 8}}{2}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-32}}{2}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{112}}{2}
144 ni -32 ga qo'shish.
x=\frac{-12±4\sqrt{7}}{2}
112 ning kvadrat ildizini chiqarish.
x=\frac{4\sqrt{7}-12}{2}
x=\frac{-12±4\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -12 ni 4\sqrt{7} ga qo'shish.
x=2\sqrt{7}-6
-12+4\sqrt{7} ni 2 ga bo'lish.
x=\frac{-4\sqrt{7}-12}{2}
x=\frac{-12±4\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -12 dan 4\sqrt{7} ni ayirish.
x=-2\sqrt{7}-6
-12-4\sqrt{7} ni 2 ga bo'lish.
x^{2}+12x+8=\left(x-\left(2\sqrt{7}-6\right)\right)\left(x-\left(-2\sqrt{7}-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -6+2\sqrt{7} ga va x_{2} uchun -6-2\sqrt{7} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}