Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1\right)\left(x^{2}+\sqrt{3}x+1\right)
x^{2}+1 ga x^{2}-\sqrt{3}x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(x^{2}-\sqrt{3}x\right)x^{4}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1 ga x^{2}+\sqrt{3}x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}-\sqrt{3}x ga x^{4} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}-\sqrt{3}x ga \sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\times 3\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
\sqrt{3} kvadrati – 3.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-3x\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-3 hosil qilish uchun -1 va 3 ni ko'paytirish.
x^{6}-\sqrt{3}x^{5}+\sqrt{3}x^{5}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}\sqrt{3}-3x ga x^{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{6}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
0 ni olish uchun -\sqrt{3}x^{5} va \sqrt{3}x^{5} ni birlashtirish.
x^{6}-3x^{4}+2x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
2x^{2} ga x^{2}-\sqrt{3}x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{6}-x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-x^{4} ni olish uchun -3x^{4} va 2x^{4} ni birlashtirish.
x^{6}-2\sqrt{3}x^{3}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
0 ni olish uchun -x^{4} va x^{4} ni birlashtirish.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-\sqrt{3}x^{3} ni olish uchun -2\sqrt{3}x^{3} va \sqrt{3}x^{3} ni birlashtirish.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}-\sqrt{3}x ga \sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\times 3\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
\sqrt{3} kvadrati – 3.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-3x\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-3 hosil qilish uchun -1 va 3 ni ko'paytirish.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\sqrt{3}x^{3}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}\sqrt{3}-3x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{6}+2x^{2}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
0 ni olish uchun -\sqrt{3}x^{3} va \sqrt{3}x^{3} ni birlashtirish.
x^{6}-x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-x^{2} ni olish uchun 2x^{2} va -3x^{2} ni birlashtirish.
x^{6}-\sqrt{3}x+\sqrt{3}x+1
0 ni olish uchun -x^{2} va x^{2} ni birlashtirish.
x^{6}+1
0 ni olish uchun -\sqrt{3}x va \sqrt{3}x ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1\right)\left(x^{2}+\sqrt{3}x+1\right))
x^{2}+1 ga x^{2}-\sqrt{3}x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}-\sqrt{3}x\right)x^{4}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1 ga x^{2}+\sqrt{3}x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}-\sqrt{3}x ga x^{4} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}-\sqrt{3}x ga \sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\times 3\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
\sqrt{3} kvadrati – 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-3x\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-3 hosil qilish uchun -1 va 3 ni ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\sqrt{3}x^{5}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}\sqrt{3}-3x ga x^{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
0 ni olish uchun -\sqrt{3}x^{5} va \sqrt{3}x^{5} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-3x^{4}+2x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
2x^{2} ga x^{2}-\sqrt{3}x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-x^{4} ni olish uchun -3x^{4} va 2x^{4} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-2\sqrt{3}x^{3}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
0 ni olish uchun -x^{4} va x^{4} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-\sqrt{3}x^{3} ni olish uchun -2\sqrt{3}x^{3} va \sqrt{3}x^{3} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}-\sqrt{3}x ga \sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\times 3\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
\sqrt{3} kvadrati – 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-3x\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-3 hosil qilish uchun -1 va 3 ni ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\sqrt{3}x^{3}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}\sqrt{3}-3x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+2x^{2}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
0 ni olish uchun -\sqrt{3}x^{3} va \sqrt{3}x^{3} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-x^{2} ni olish uchun 2x^{2} va -3x^{2} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x+\sqrt{3}x+1)
0 ni olish uchun -x^{2} va x^{2} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+1)
0 ni olish uchun -\sqrt{3}x va \sqrt{3}x ni birlashtirish.
6x^{6-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
6x^{5}
6 dan 1 ni ayirish.