Baholash
\frac{\left(3x^{2}-1\right)^{2}}{9}
Omil
\frac{\left(3x^{2}-1\right)^{2}}{9}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x^{2}+\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
\frac{2x}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(x^{2}+\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
\sqrt{3} kvadrati – 3.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
\frac{2x\sqrt{3}}{3} va \frac{1}{3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)
\frac{2x}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)
\sqrt{3} kvadrati – 3.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)
\frac{2x\sqrt{3}}{3} va \frac{1}{3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2} hosil qilish uchun x^{2}+\frac{2x\sqrt{3}+1}{3} va x^{2}+\frac{2x\sqrt{3}+1}{3} ni ko'paytirish.
\left(\frac{3x^{2}}{3}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x^{2} ni \frac{3}{3} marotabaga ko'paytirish.
\left(\frac{3x^{2}+2x\sqrt{3}+1}{3}\right)^{2}
\frac{3x^{2}}{3} va \frac{2x\sqrt{3}+1}{3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\left(3x^{2}+2x\sqrt{3}+1\right)^{2}}{3^{2}}
\frac{3x^{2}+2x\sqrt{3}+1}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\left(\sqrt{3}\right)^{2}x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
3x^{2}+2x\sqrt{3}+1 kvadratini chiqarish.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\times 3x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
\sqrt{3} kvadrati – 3.
\frac{9x^{4}+12\sqrt{3}x^{3}+12x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
12 hosil qilish uchun 4 va 3 ni ko'paytirish.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{3^{2}}
18x^{2} ni olish uchun 12x^{2} va 6x^{2} ni birlashtirish.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{9}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}