Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
x+y ga x-y ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
Hisoblang: \left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-\left(y^{2}\right)^{2}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
x^{4}-y^{4}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
x^{4}-y^{4}+x^{2}y^{2}-x^{4}-y^{2}\left(x^{2}+y^{2}\right)
x^{2} ga y^{2}-x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-y^{4}+x^{2}y^{2}-y^{2}\left(x^{2}+y^{2}\right)
0 ni olish uchun x^{4} va -x^{4} ni birlashtirish.
-y^{4}+x^{2}y^{2}-\left(y^{2}x^{2}+y^{4}\right)
y^{2} ga x^{2}+y^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-y^{4}+x^{2}y^{2}-y^{2}x^{2}-y^{4}
y^{2}x^{2}+y^{4} teskarisini topish uchun har birining teskarisini toping.
-y^{4}-y^{4}
0 ni olish uchun x^{2}y^{2} va -y^{2}x^{2} ni birlashtirish.
-2y^{4}
-2y^{4} ni olish uchun -y^{4} va -y^{4} ni birlashtirish.
\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
x+y ga x-y ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
Hisoblang: \left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-\left(y^{2}\right)^{2}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
x^{4}-y^{4}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
x^{4}-y^{4}+x^{2}y^{2}-x^{4}-y^{2}\left(x^{2}+y^{2}\right)
x^{2} ga y^{2}-x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-y^{4}+x^{2}y^{2}-y^{2}\left(x^{2}+y^{2}\right)
0 ni olish uchun x^{4} va -x^{4} ni birlashtirish.
-y^{4}+x^{2}y^{2}-\left(y^{2}x^{2}+y^{4}\right)
y^{2} ga x^{2}+y^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-y^{4}+x^{2}y^{2}-y^{2}x^{2}-y^{4}
y^{2}x^{2}+y^{4} teskarisini topish uchun har birining teskarisini toping.
-y^{4}-y^{4}
0 ni olish uchun x^{2}y^{2} va -y^{2}x^{2} ni birlashtirish.
-2y^{4}
-2y^{4} ni olish uchun -y^{4} va -y^{4} ni birlashtirish.