a uchun yechish
\left\{\begin{matrix}a=-\frac{-2bx+x+b-2}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&b=2\text{ and }x=0\end{matrix}\right,
b uchun yechish
\left\{\begin{matrix}b=-\frac{2-x-ax}{2x-1}\text{, }&x\neq \frac{1}{2}\\b\in \mathrm{R}\text{, }&x=\frac{1}{2}\text{ and }a=3\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-x+2bx-b=2x^{2}+ax-2
x+b ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+ax-2=2x^{2}-x+2bx-b
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
ax-2=2x^{2}-x+2bx-b-2x^{2}
Ikkala tarafdan 2x^{2} ni ayirish.
ax-2=-x+2bx-b
0 ni olish uchun 2x^{2} va -2x^{2} ni birlashtirish.
ax=-x+2bx-b+2
2 ni ikki tarafga qo’shing.
xa=2bx-x-b+2
Tenglama standart shaklda.
\frac{xa}{x}=\frac{2bx-x-b+2}{x}
Ikki tarafini x ga bo‘ling.
a=\frac{2bx-x-b+2}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
2x^{2}-x+2bx-b=2x^{2}+ax-2
x+b ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x+2bx-b=2x^{2}+ax-2-2x^{2}
Ikkala tarafdan 2x^{2} ni ayirish.
-x+2bx-b=ax-2
0 ni olish uchun 2x^{2} va -2x^{2} ni birlashtirish.
2bx-b=ax-2+x
x ni ikki tarafga qo’shing.
\left(2x-1\right)b=ax-2+x
b'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(2x-1\right)b=ax+x-2
Tenglama standart shaklda.
\frac{\left(2x-1\right)b}{2x-1}=\frac{ax+x-2}{2x-1}
Ikki tarafini 2x-1 ga bo‘ling.
b=\frac{ax+x-2}{2x-1}
2x-1 ga bo'lish 2x-1 ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}