x uchun yechish (complex solution)
x=\frac{-\sqrt{519}i+11}{8}\approx 1,375-2,847696437i
x=\frac{11+\sqrt{519}i}{8}\approx 1,375+2,847696437i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-3x-40=2x\left(x+5\right)+3x\left(x-8\right)
x+5 ga x-8 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x-40=2x^{2}+10x+3x\left(x-8\right)
2x ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x-40=2x^{2}+10x+3x^{2}-24x
3x ga x-8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x-40=5x^{2}+10x-24x
5x^{2} ni olish uchun 2x^{2} va 3x^{2} ni birlashtirish.
x^{2}-3x-40=5x^{2}-14x
-14x ni olish uchun 10x va -24x ni birlashtirish.
x^{2}-3x-40-5x^{2}=-14x
Ikkala tarafdan 5x^{2} ni ayirish.
-4x^{2}-3x-40=-14x
-4x^{2} ni olish uchun x^{2} va -5x^{2} ni birlashtirish.
-4x^{2}-3x-40+14x=0
14x ni ikki tarafga qo’shing.
-4x^{2}+11x-40=0
11x ni olish uchun -3x va 14x ni birlashtirish.
x=\frac{-11±\sqrt{11^{2}-4\left(-4\right)\left(-40\right)}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, 11 ni b va -40 ni c bilan almashtiring.
x=\frac{-11±\sqrt{121-4\left(-4\right)\left(-40\right)}}{2\left(-4\right)}
11 kvadratini chiqarish.
x=\frac{-11±\sqrt{121+16\left(-40\right)}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{121-640}}{2\left(-4\right)}
16 ni -40 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{-519}}{2\left(-4\right)}
121 ni -640 ga qo'shish.
x=\frac{-11±\sqrt{519}i}{2\left(-4\right)}
-519 ning kvadrat ildizini chiqarish.
x=\frac{-11±\sqrt{519}i}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{-11+\sqrt{519}i}{-8}
x=\frac{-11±\sqrt{519}i}{-8} tenglamasini yeching, bunda ± musbat. -11 ni i\sqrt{519} ga qo'shish.
x=\frac{-\sqrt{519}i+11}{8}
-11+i\sqrt{519} ni -8 ga bo'lish.
x=\frac{-\sqrt{519}i-11}{-8}
x=\frac{-11±\sqrt{519}i}{-8} tenglamasini yeching, bunda ± manfiy. -11 dan i\sqrt{519} ni ayirish.
x=\frac{11+\sqrt{519}i}{8}
-11-i\sqrt{519} ni -8 ga bo'lish.
x=\frac{-\sqrt{519}i+11}{8} x=\frac{11+\sqrt{519}i}{8}
Tenglama yechildi.
x^{2}-3x-40=2x\left(x+5\right)+3x\left(x-8\right)
x+5 ga x-8 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x-40=2x^{2}+10x+3x\left(x-8\right)
2x ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x-40=2x^{2}+10x+3x^{2}-24x
3x ga x-8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x-40=5x^{2}+10x-24x
5x^{2} ni olish uchun 2x^{2} va 3x^{2} ni birlashtirish.
x^{2}-3x-40=5x^{2}-14x
-14x ni olish uchun 10x va -24x ni birlashtirish.
x^{2}-3x-40-5x^{2}=-14x
Ikkala tarafdan 5x^{2} ni ayirish.
-4x^{2}-3x-40=-14x
-4x^{2} ni olish uchun x^{2} va -5x^{2} ni birlashtirish.
-4x^{2}-3x-40+14x=0
14x ni ikki tarafga qo’shing.
-4x^{2}+11x-40=0
11x ni olish uchun -3x va 14x ni birlashtirish.
-4x^{2}+11x=40
40 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{-4x^{2}+11x}{-4}=\frac{40}{-4}
Ikki tarafini -4 ga bo‘ling.
x^{2}+\frac{11}{-4}x=\frac{40}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{4}x=\frac{40}{-4}
11 ni -4 ga bo'lish.
x^{2}-\frac{11}{4}x=-10
40 ni -4 ga bo'lish.
x^{2}-\frac{11}{4}x+\left(-\frac{11}{8}\right)^{2}=-10+\left(-\frac{11}{8}\right)^{2}
-\frac{11}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{8} olish uchun. Keyin, -\frac{11}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{4}x+\frac{121}{64}=-10+\frac{121}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{8} kvadratini chiqarish.
x^{2}-\frac{11}{4}x+\frac{121}{64}=-\frac{519}{64}
-10 ni \frac{121}{64} ga qo'shish.
\left(x-\frac{11}{8}\right)^{2}=-\frac{519}{64}
x^{2}-\frac{11}{4}x+\frac{121}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{8}\right)^{2}}=\sqrt{-\frac{519}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{8}=\frac{\sqrt{519}i}{8} x-\frac{11}{8}=-\frac{\sqrt{519}i}{8}
Qisqartirish.
x=\frac{11+\sqrt{519}i}{8} x=\frac{-\sqrt{519}i+11}{8}
\frac{11}{8} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}