x uchun yechish (complex solution)
x=-19+12i
x=-19-12i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+86x+1849+\left(2x+34-8\right)^{2}=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+43\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+86x+1849+\left(2x+26\right)^{2}=0
26 olish uchun 34 dan 8 ni ayirish.
x^{2}+86x+1849+4x^{2}+104x+676=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+26\right)^{2} kengaytirilishi uchun ishlating.
5x^{2}+86x+1849+104x+676=0
5x^{2} ni olish uchun x^{2} va 4x^{2} ni birlashtirish.
5x^{2}+190x+1849+676=0
190x ni olish uchun 86x va 104x ni birlashtirish.
5x^{2}+190x+2525=0
2525 olish uchun 1849 va 676'ni qo'shing.
x=\frac{-190±\sqrt{190^{2}-4\times 5\times 2525}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 190 ni b va 2525 ni c bilan almashtiring.
x=\frac{-190±\sqrt{36100-4\times 5\times 2525}}{2\times 5}
190 kvadratini chiqarish.
x=\frac{-190±\sqrt{36100-20\times 2525}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-190±\sqrt{36100-50500}}{2\times 5}
-20 ni 2525 marotabaga ko'paytirish.
x=\frac{-190±\sqrt{-14400}}{2\times 5}
36100 ni -50500 ga qo'shish.
x=\frac{-190±120i}{2\times 5}
-14400 ning kvadrat ildizini chiqarish.
x=\frac{-190±120i}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{-190+120i}{10}
x=\frac{-190±120i}{10} tenglamasini yeching, bunda ± musbat. -190 ni 120i ga qo'shish.
x=-19+12i
-190+120i ni 10 ga bo'lish.
x=\frac{-190-120i}{10}
x=\frac{-190±120i}{10} tenglamasini yeching, bunda ± manfiy. -190 dan 120i ni ayirish.
x=-19-12i
-190-120i ni 10 ga bo'lish.
x=-19+12i x=-19-12i
Tenglama yechildi.
x^{2}+86x+1849+\left(2x+34-8\right)^{2}=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+43\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+86x+1849+\left(2x+26\right)^{2}=0
26 olish uchun 34 dan 8 ni ayirish.
x^{2}+86x+1849+4x^{2}+104x+676=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+26\right)^{2} kengaytirilishi uchun ishlating.
5x^{2}+86x+1849+104x+676=0
5x^{2} ni olish uchun x^{2} va 4x^{2} ni birlashtirish.
5x^{2}+190x+1849+676=0
190x ni olish uchun 86x va 104x ni birlashtirish.
5x^{2}+190x+2525=0
2525 olish uchun 1849 va 676'ni qo'shing.
5x^{2}+190x=-2525
Ikkala tarafdan 2525 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{5x^{2}+190x}{5}=-\frac{2525}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{190}{5}x=-\frac{2525}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+38x=-\frac{2525}{5}
190 ni 5 ga bo'lish.
x^{2}+38x=-505
-2525 ni 5 ga bo'lish.
x^{2}+38x+19^{2}=-505+19^{2}
38 ni bo‘lish, x shartining koeffitsienti, 2 ga 19 olish uchun. Keyin, 19 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+38x+361=-505+361
19 kvadratini chiqarish.
x^{2}+38x+361=-144
-505 ni 361 ga qo'shish.
\left(x+19\right)^{2}=-144
x^{2}+38x+361 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+19\right)^{2}}=\sqrt{-144}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+19=12i x+19=-12i
Qisqartirish.
x=-19+12i x=-19-12i
Tenglamaning ikkala tarafidan 19 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}