x uchun yechish
x=\sqrt{13}-2\approx 1,605551275
x=-\left(\sqrt{13}+2\right)\approx -5,605551275
Grafik
Baham ko'rish
Klipbordga nusxa olish
x-7-\left(x-2\right)^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
-7 olish uchun 3 dan 10 ni ayirish.
x-7-\left(x^{2}-4x+4\right)=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x-7-x^{2}+4x-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
x^{2}-4x+4 teskarisini topish uchun har birining teskarisini toping.
5x-7-x^{2}-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
5x ni olish uchun x va 4x ni birlashtirish.
5x-11-x^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
-11 olish uchun -7 dan 4 ni ayirish.
5x-11-x^{2}=x^{2}-2x+1-\left(x-5\right)^{2}+4+x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
5x-11-x^{2}=x^{2}-2x+1-\left(x^{2}-10x+25\right)+4+x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-5\right)^{2} kengaytirilishi uchun ishlating.
5x-11-x^{2}=x^{2}-2x+1-x^{2}+10x-25+4+x
x^{2}-10x+25 teskarisini topish uchun har birining teskarisini toping.
5x-11-x^{2}=-2x+1+10x-25+4+x
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
5x-11-x^{2}=8x+1-25+4+x
8x ni olish uchun -2x va 10x ni birlashtirish.
5x-11-x^{2}=8x-24+4+x
-24 olish uchun 1 dan 25 ni ayirish.
5x-11-x^{2}=8x-20+x
-20 olish uchun -24 va 4'ni qo'shing.
5x-11-x^{2}=9x-20
9x ni olish uchun 8x va x ni birlashtirish.
5x-11-x^{2}-9x=-20
Ikkala tarafdan 9x ni ayirish.
-4x-11-x^{2}=-20
-4x ni olish uchun 5x va -9x ni birlashtirish.
-4x-11-x^{2}+20=0
20 ni ikki tarafga qo’shing.
-4x+9-x^{2}=0
9 olish uchun -11 va 20'ni qo'shing.
-x^{2}-4x+9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 9}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -4 ni b va 9 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 9}}{2\left(-1\right)}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 9}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16+36}}{2\left(-1\right)}
4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{52}}{2\left(-1\right)}
16 ni 36 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{13}}{2\left(-1\right)}
52 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{13}}{2\left(-1\right)}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2\sqrt{13}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{13}+4}{-2}
x=\frac{4±2\sqrt{13}}{-2} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{13} ga qo'shish.
x=-\left(\sqrt{13}+2\right)
4+2\sqrt{13} ni -2 ga bo'lish.
x=\frac{4-2\sqrt{13}}{-2}
x=\frac{4±2\sqrt{13}}{-2} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{13} ni ayirish.
x=\sqrt{13}-2
4-2\sqrt{13} ni -2 ga bo'lish.
x=-\left(\sqrt{13}+2\right) x=\sqrt{13}-2
Tenglama yechildi.
x-7-\left(x-2\right)^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
-7 olish uchun 3 dan 10 ni ayirish.
x-7-\left(x^{2}-4x+4\right)=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x-7-x^{2}+4x-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
x^{2}-4x+4 teskarisini topish uchun har birining teskarisini toping.
5x-7-x^{2}-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
5x ni olish uchun x va 4x ni birlashtirish.
5x-11-x^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
-11 olish uchun -7 dan 4 ni ayirish.
5x-11-x^{2}=x^{2}-2x+1-\left(x-5\right)^{2}+4+x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
5x-11-x^{2}=x^{2}-2x+1-\left(x^{2}-10x+25\right)+4+x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-5\right)^{2} kengaytirilishi uchun ishlating.
5x-11-x^{2}=x^{2}-2x+1-x^{2}+10x-25+4+x
x^{2}-10x+25 teskarisini topish uchun har birining teskarisini toping.
5x-11-x^{2}=-2x+1+10x-25+4+x
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
5x-11-x^{2}=8x+1-25+4+x
8x ni olish uchun -2x va 10x ni birlashtirish.
5x-11-x^{2}=8x-24+4+x
-24 olish uchun 1 dan 25 ni ayirish.
5x-11-x^{2}=8x-20+x
-20 olish uchun -24 va 4'ni qo'shing.
5x-11-x^{2}=9x-20
9x ni olish uchun 8x va x ni birlashtirish.
5x-11-x^{2}-9x=-20
Ikkala tarafdan 9x ni ayirish.
-4x-11-x^{2}=-20
-4x ni olish uchun 5x va -9x ni birlashtirish.
-4x-x^{2}=-20+11
11 ni ikki tarafga qo’shing.
-4x-x^{2}=-9
-9 olish uchun -20 va 11'ni qo'shing.
-x^{2}-4x=-9
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-4x}{-1}=-\frac{9}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{9}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+4x=-\frac{9}{-1}
-4 ni -1 ga bo'lish.
x^{2}+4x=9
-9 ni -1 ga bo'lish.
x^{2}+4x+2^{2}=9+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=9+4
2 kvadratini chiqarish.
x^{2}+4x+4=13
9 ni 4 ga qo'shish.
\left(x+2\right)^{2}=13
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{13}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=\sqrt{13} x+2=-\sqrt{13}
Qisqartirish.
x=\sqrt{13}-2 x=-\sqrt{13}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}