x uchun yechish
x=\frac{3\sqrt{13}-11}{2}\approx -0,091673087
x=\frac{-3\sqrt{13}-11}{2}\approx -10,908326913
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+6x+9+5x=8
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+3\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+11x+9=8
11x ni olish uchun 6x va 5x ni birlashtirish.
x^{2}+11x+9-8=0
Ikkala tarafdan 8 ni ayirish.
x^{2}+11x+1=0
1 olish uchun 9 dan 8 ni ayirish.
x=\frac{-11±\sqrt{11^{2}-4}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 11 ni b va 1 ni c bilan almashtiring.
x=\frac{-11±\sqrt{121-4}}{2}
11 kvadratini chiqarish.
x=\frac{-11±\sqrt{117}}{2}
121 ni -4 ga qo'shish.
x=\frac{-11±3\sqrt{13}}{2}
117 ning kvadrat ildizini chiqarish.
x=\frac{3\sqrt{13}-11}{2}
x=\frac{-11±3\sqrt{13}}{2} tenglamasini yeching, bunda ± musbat. -11 ni 3\sqrt{13} ga qo'shish.
x=\frac{-3\sqrt{13}-11}{2}
x=\frac{-11±3\sqrt{13}}{2} tenglamasini yeching, bunda ± manfiy. -11 dan 3\sqrt{13} ni ayirish.
x=\frac{3\sqrt{13}-11}{2} x=\frac{-3\sqrt{13}-11}{2}
Tenglama yechildi.
x^{2}+6x+9+5x=8
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+3\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+11x+9=8
11x ni olish uchun 6x va 5x ni birlashtirish.
x^{2}+11x=8-9
Ikkala tarafdan 9 ni ayirish.
x^{2}+11x=-1
-1 olish uchun 8 dan 9 ni ayirish.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-1+\left(\frac{11}{2}\right)^{2}
11 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{11}{2} olish uchun. Keyin, \frac{11}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+11x+\frac{121}{4}=-1+\frac{121}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{11}{2} kvadratini chiqarish.
x^{2}+11x+\frac{121}{4}=\frac{117}{4}
-1 ni \frac{121}{4} ga qo'shish.
\left(x+\frac{11}{2}\right)^{2}=\frac{117}{4}
x^{2}+11x+\frac{121}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{117}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{11}{2}=\frac{3\sqrt{13}}{2} x+\frac{11}{2}=-\frac{3\sqrt{13}}{2}
Qisqartirish.
x=\frac{3\sqrt{13}-11}{2} x=\frac{-3\sqrt{13}-11}{2}
Tenglamaning ikkala tarafidan \frac{11}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}