Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+6x+9+\left(3x-8\right)\left(3x+8\right)+1=3\left(x\left(x+3\right)+6\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+3\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+6x+9+\left(3x\right)^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Hisoblang: \left(3x-8\right)\left(3x+8\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 8 kvadratini chiqarish.
x^{2}+6x+9+3^{2}x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
\left(3x\right)^{2} ni kengaytirish.
x^{2}+6x+9+9x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
10x^{2}+6x+9-64+1=3\left(x\left(x+3\right)+6\right)
10x^{2} ni olish uchun x^{2} va 9x^{2} ni birlashtirish.
10x^{2}+6x-55+1=3\left(x\left(x+3\right)+6\right)
-55 olish uchun 9 dan 64 ni ayirish.
10x^{2}+6x-54=3\left(x\left(x+3\right)+6\right)
-54 olish uchun -55 va 1'ni qo'shing.
10x^{2}+6x-54=3\left(x^{2}+3x+6\right)
x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10x^{2}+6x-54=3x^{2}+9x+18
3 ga x^{2}+3x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10x^{2}+6x-54-3x^{2}=9x+18
Ikkala tarafdan 3x^{2} ni ayirish.
7x^{2}+6x-54=9x+18
7x^{2} ni olish uchun 10x^{2} va -3x^{2} ni birlashtirish.
7x^{2}+6x-54-9x=18
Ikkala tarafdan 9x ni ayirish.
7x^{2}-3x-54=18
-3x ni olish uchun 6x va -9x ni birlashtirish.
7x^{2}-3x-54-18=0
Ikkala tarafdan 18 ni ayirish.
7x^{2}-3x-72=0
-72 olish uchun -54 dan 18 ni ayirish.
a+b=-3 ab=7\left(-72\right)=-504
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 7x^{2}+ax+bx-72 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-504 2,-252 3,-168 4,-126 6,-84 7,-72 8,-63 9,-56 12,-42 14,-36 18,-28 21,-24
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -504-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-504=-503 2-252=-250 3-168=-165 4-126=-122 6-84=-78 7-72=-65 8-63=-55 9-56=-47 12-42=-30 14-36=-22 18-28=-10 21-24=-3
Har bir juftlik yigʻindisini hisoblang.
a=-24 b=21
Yechim – -3 yigʻindisini beruvchi juftlik.
\left(7x^{2}-24x\right)+\left(21x-72\right)
7x^{2}-3x-72 ni \left(7x^{2}-24x\right)+\left(21x-72\right) sifatida qaytadan yozish.
x\left(7x-24\right)+3\left(7x-24\right)
Birinchi guruhda x ni va ikkinchi guruhda 3 ni faktordan chiqaring.
\left(7x-24\right)\left(x+3\right)
Distributiv funktsiyasidan foydalangan holda 7x-24 umumiy terminini chiqaring.
x=\frac{24}{7} x=-3
Tenglamani yechish uchun 7x-24=0 va x+3=0 ni yeching.
x^{2}+6x+9+\left(3x-8\right)\left(3x+8\right)+1=3\left(x\left(x+3\right)+6\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+3\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+6x+9+\left(3x\right)^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Hisoblang: \left(3x-8\right)\left(3x+8\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 8 kvadratini chiqarish.
x^{2}+6x+9+3^{2}x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
\left(3x\right)^{2} ni kengaytirish.
x^{2}+6x+9+9x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
10x^{2}+6x+9-64+1=3\left(x\left(x+3\right)+6\right)
10x^{2} ni olish uchun x^{2} va 9x^{2} ni birlashtirish.
10x^{2}+6x-55+1=3\left(x\left(x+3\right)+6\right)
-55 olish uchun 9 dan 64 ni ayirish.
10x^{2}+6x-54=3\left(x\left(x+3\right)+6\right)
-54 olish uchun -55 va 1'ni qo'shing.
10x^{2}+6x-54=3\left(x^{2}+3x+6\right)
x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10x^{2}+6x-54=3x^{2}+9x+18
3 ga x^{2}+3x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10x^{2}+6x-54-3x^{2}=9x+18
Ikkala tarafdan 3x^{2} ni ayirish.
7x^{2}+6x-54=9x+18
7x^{2} ni olish uchun 10x^{2} va -3x^{2} ni birlashtirish.
7x^{2}+6x-54-9x=18
Ikkala tarafdan 9x ni ayirish.
7x^{2}-3x-54=18
-3x ni olish uchun 6x va -9x ni birlashtirish.
7x^{2}-3x-54-18=0
Ikkala tarafdan 18 ni ayirish.
7x^{2}-3x-72=0
-72 olish uchun -54 dan 18 ni ayirish.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 7\left(-72\right)}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, -3 ni b va -72 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 7\left(-72\right)}}{2\times 7}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9-28\left(-72\right)}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{9+2016}}{2\times 7}
-28 ni -72 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{2025}}{2\times 7}
9 ni 2016 ga qo'shish.
x=\frac{-\left(-3\right)±45}{2\times 7}
2025 ning kvadrat ildizini chiqarish.
x=\frac{3±45}{2\times 7}
-3 ning teskarisi 3 ga teng.
x=\frac{3±45}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{48}{14}
x=\frac{3±45}{14} tenglamasini yeching, bunda ± musbat. 3 ni 45 ga qo'shish.
x=\frac{24}{7}
\frac{48}{14} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{42}{14}
x=\frac{3±45}{14} tenglamasini yeching, bunda ± manfiy. 3 dan 45 ni ayirish.
x=-3
-42 ni 14 ga bo'lish.
x=\frac{24}{7} x=-3
Tenglama yechildi.
x^{2}+6x+9+\left(3x-8\right)\left(3x+8\right)+1=3\left(x\left(x+3\right)+6\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+3\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+6x+9+\left(3x\right)^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Hisoblang: \left(3x-8\right)\left(3x+8\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 8 kvadratini chiqarish.
x^{2}+6x+9+3^{2}x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
\left(3x\right)^{2} ni kengaytirish.
x^{2}+6x+9+9x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
10x^{2}+6x+9-64+1=3\left(x\left(x+3\right)+6\right)
10x^{2} ni olish uchun x^{2} va 9x^{2} ni birlashtirish.
10x^{2}+6x-55+1=3\left(x\left(x+3\right)+6\right)
-55 olish uchun 9 dan 64 ni ayirish.
10x^{2}+6x-54=3\left(x\left(x+3\right)+6\right)
-54 olish uchun -55 va 1'ni qo'shing.
10x^{2}+6x-54=3\left(x^{2}+3x+6\right)
x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10x^{2}+6x-54=3x^{2}+9x+18
3 ga x^{2}+3x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10x^{2}+6x-54-3x^{2}=9x+18
Ikkala tarafdan 3x^{2} ni ayirish.
7x^{2}+6x-54=9x+18
7x^{2} ni olish uchun 10x^{2} va -3x^{2} ni birlashtirish.
7x^{2}+6x-54-9x=18
Ikkala tarafdan 9x ni ayirish.
7x^{2}-3x-54=18
-3x ni olish uchun 6x va -9x ni birlashtirish.
7x^{2}-3x=18+54
54 ni ikki tarafga qo’shing.
7x^{2}-3x=72
72 olish uchun 18 va 54'ni qo'shing.
\frac{7x^{2}-3x}{7}=\frac{72}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}-\frac{3}{7}x=\frac{72}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{7}x+\left(-\frac{3}{14}\right)^{2}=\frac{72}{7}+\left(-\frac{3}{14}\right)^{2}
-\frac{3}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{14} olish uchun. Keyin, -\frac{3}{14} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{72}{7}+\frac{9}{196}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{14} kvadratini chiqarish.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{2025}{196}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{72}{7} ni \frac{9}{196} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{14}\right)^{2}=\frac{2025}{196}
x^{2}-\frac{3}{7}x+\frac{9}{196} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{14}\right)^{2}}=\sqrt{\frac{2025}{196}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{14}=\frac{45}{14} x-\frac{3}{14}=-\frac{45}{14}
Qisqartirish.
x=\frac{24}{7} x=-3
\frac{3}{14} ni tenglamaning ikkala tarafiga qo'shish.