Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4=3x+2
Hisoblang: \left(x+2\right)\left(x-2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 2 kvadratini chiqarish.
x^{2}-4-3x=2
Ikkala tarafdan 3x ni ayirish.
x^{2}-4-3x-2=0
Ikkala tarafdan 2 ni ayirish.
x^{2}-6-3x=0
-6 olish uchun -4 dan 2 ni ayirish.
x^{2}-3x-6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-6\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -6 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-6\right)}}{2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+24}}{2}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{33}}{2}
9 ni 24 ga qo'shish.
x=\frac{3±\sqrt{33}}{2}
-3 ning teskarisi 3 ga teng.
x=\frac{\sqrt{33}+3}{2}
x=\frac{3±\sqrt{33}}{2} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{33} ga qo'shish.
x=\frac{3-\sqrt{33}}{2}
x=\frac{3±\sqrt{33}}{2} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{33} ni ayirish.
x=\frac{\sqrt{33}+3}{2} x=\frac{3-\sqrt{33}}{2}
Tenglama yechildi.
x^{2}-4=3x+2
Hisoblang: \left(x+2\right)\left(x-2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 2 kvadratini chiqarish.
x^{2}-4-3x=2
Ikkala tarafdan 3x ni ayirish.
x^{2}-3x=2+4
4 ni ikki tarafga qo’shing.
x^{2}-3x=6
6 olish uchun 2 va 4'ni qo'shing.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=6+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=6+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{33}{4}
6 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{33}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{33}}{2} x-\frac{3}{2}=-\frac{\sqrt{33}}{2}
Qisqartirish.
x=\frac{\sqrt{33}+3}{2} x=\frac{3-\sqrt{33}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.