x uchun yechish
x=\frac{1}{2}=0,5
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+x-2+2=x\left(2-x\right)
x+2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+x=x\left(2-x\right)
0 olish uchun -2 va 2'ni qo'shing.
x^{2}+x=2x-x^{2}
x ga 2-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x-2x=-x^{2}
Ikkala tarafdan 2x ni ayirish.
x^{2}-x=-x^{2}
-x ni olish uchun x va -2x ni birlashtirish.
x^{2}-x+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
2x^{2}-x=0
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
x\left(2x-1\right)=0
x omili.
x=0 x=\frac{1}{2}
Tenglamani yechish uchun x=0 va 2x-1=0 ni yeching.
x^{2}+x-2+2=x\left(2-x\right)
x+2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+x=x\left(2-x\right)
0 olish uchun -2 va 2'ni qo'shing.
x^{2}+x=2x-x^{2}
x ga 2-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x-2x=-x^{2}
Ikkala tarafdan 2x ni ayirish.
x^{2}-x=-x^{2}
-x ni olish uchun x va -2x ni birlashtirish.
x^{2}-x+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
2x^{2}-x=0
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -1 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±1}{2\times 2}
1 ning kvadrat ildizini chiqarish.
x=\frac{1±1}{2\times 2}
-1 ning teskarisi 1 ga teng.
x=\frac{1±1}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2}{4}
x=\frac{1±1}{4} tenglamasini yeching, bunda ± musbat. 1 ni 1 ga qo'shish.
x=\frac{1}{2}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{4}
x=\frac{1±1}{4} tenglamasini yeching, bunda ± manfiy. 1 dan 1 ni ayirish.
x=0
0 ni 4 ga bo'lish.
x=\frac{1}{2} x=0
Tenglama yechildi.
x^{2}+x-2+2=x\left(2-x\right)
x+2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+x=x\left(2-x\right)
0 olish uchun -2 va 2'ni qo'shing.
x^{2}+x=2x-x^{2}
x ga 2-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x-2x=-x^{2}
Ikkala tarafdan 2x ni ayirish.
x^{2}-x=-x^{2}
-x ni olish uchun x va -2x ni birlashtirish.
x^{2}-x+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
2x^{2}-x=0
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
\frac{2x^{2}-x}{2}=\frac{0}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{1}{2}x=\frac{0}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=0
0 ni 2 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4}=-\frac{1}{4}
Qisqartirish.
x=\frac{1}{2} x=0
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}