x uchun yechish
x=-3
x=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+5x+6=5\left(x+3\right)
x+2 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+5x+6=5x+15
5 ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+5x+6-5x=15
Ikkala tarafdan 5x ni ayirish.
x^{2}+6=15
0 ni olish uchun 5x va -5x ni birlashtirish.
x^{2}=15-6
Ikkala tarafdan 6 ni ayirish.
x^{2}=9
9 olish uchun 15 dan 6 ni ayirish.
x=3 x=-3
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}+5x+6=5\left(x+3\right)
x+2 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+5x+6=5x+15
5 ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+5x+6-5x=15
Ikkala tarafdan 5x ni ayirish.
x^{2}+6=15
0 ni olish uchun 5x va -5x ni birlashtirish.
x^{2}+6-15=0
Ikkala tarafdan 15 ni ayirish.
x^{2}-9=0
-9 olish uchun 6 dan 15 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -9 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-9\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{36}}{2}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{0±6}{2}
36 ning kvadrat ildizini chiqarish.
x=3
x=\frac{0±6}{2} tenglamasini yeching, bunda ± musbat. 6 ni 2 ga bo'lish.
x=-3
x=\frac{0±6}{2} tenglamasini yeching, bunda ± manfiy. -6 ni 2 ga bo'lish.
x=3 x=-3
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}