Baholash
\left(x+1\right)\left(x+\left(-3-2i\right)\right)\left(x+\left(-3+2i\right)\right)
Kengaytirish
x^{3}-5x^{2}+7x+13
Baham ko'rish
Klipbordga nusxa olish
\left(x\left(x-\left(3-2i\right)\right)+x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
x+1 ga x-\left(3-2i\right) ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
x\left(x-\left(3-2i\right)\right)+x-\left(3-2i\right) ga x-\left(3+2i\right) ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(x+\left(-3+2i\right)\right)\left(x-\left(3+2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
-3+2i hosil qilish uchun -1 va 3-2i ni ko'paytirish.
x\left(x+\left(-3+2i\right)\right)\left(x+\left(-3-2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
-3-2i hosil qilish uchun -1 va 3+2i ni ko'paytirish.
\left(x^{2}+\left(-3+2i\right)x\right)\left(x+\left(-3-2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
x ga x+\left(-3+2i\right) ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}+\left(-3-2i\right)x^{2}+\left(-3+2i\right)x^{2}+13x+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
x^{2}+\left(-3+2i\right)x ifodaning har bir elementini x+\left(-3-2i\right) ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
x^{3}-6x^{2}+13x+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
-6x^{2} ni olish uchun \left(-3-2i\right)x^{2} va \left(-3+2i\right)x^{2} ni birlashtirish.
x^{3}-6x^{2}+13x+\left(x+\left(-3+2i\right)\right)\left(x-\left(3+2i\right)\right)
-3+2i hosil qilish uchun -1 va 3-2i ni ko'paytirish.
x^{3}-6x^{2}+13x+\left(x+\left(-3+2i\right)\right)\left(x+\left(-3-2i\right)\right)
-3-2i hosil qilish uchun -1 va 3+2i ni ko'paytirish.
x^{3}-6x^{2}+13x+x^{2}+\left(-3-2i\right)x+\left(-3+2i\right)x+13
x+\left(-3+2i\right) ifodaning har bir elementini x+\left(-3-2i\right) ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
x^{3}-6x^{2}+13x+x^{2}-6x+13
-6x ni olish uchun \left(-3-2i\right)x va \left(-3+2i\right)x ni birlashtirish.
x^{3}-5x^{2}+13x-6x+13
-5x^{2} ni olish uchun -6x^{2} va x^{2} ni birlashtirish.
x^{3}-5x^{2}+7x+13
7x ni olish uchun 13x va -6x ni birlashtirish.
\left(x\left(x-\left(3-2i\right)\right)+x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
x+1 ga x-\left(3-2i\right) ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
x\left(x-\left(3-2i\right)\right)+x-\left(3-2i\right) ga x-\left(3+2i\right) ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(x+\left(-3+2i\right)\right)\left(x-\left(3+2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
-3+2i hosil qilish uchun -1 va 3-2i ni ko'paytirish.
x\left(x+\left(-3+2i\right)\right)\left(x+\left(-3-2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
-3-2i hosil qilish uchun -1 va 3+2i ni ko'paytirish.
\left(x^{2}+\left(-3+2i\right)x\right)\left(x+\left(-3-2i\right)\right)+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
x ga x+\left(-3+2i\right) ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}+\left(-3-2i\right)x^{2}+\left(-3+2i\right)x^{2}+13x+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
x^{2}+\left(-3+2i\right)x ifodaning har bir elementini x+\left(-3-2i\right) ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
x^{3}-6x^{2}+13x+\left(x-\left(3-2i\right)\right)\left(x-\left(3+2i\right)\right)
-6x^{2} ni olish uchun \left(-3-2i\right)x^{2} va \left(-3+2i\right)x^{2} ni birlashtirish.
x^{3}-6x^{2}+13x+\left(x+\left(-3+2i\right)\right)\left(x-\left(3+2i\right)\right)
-3+2i hosil qilish uchun -1 va 3-2i ni ko'paytirish.
x^{3}-6x^{2}+13x+\left(x+\left(-3+2i\right)\right)\left(x+\left(-3-2i\right)\right)
-3-2i hosil qilish uchun -1 va 3+2i ni ko'paytirish.
x^{3}-6x^{2}+13x+x^{2}+\left(-3-2i\right)x+\left(-3+2i\right)x+13
x+\left(-3+2i\right) ifodaning har bir elementini x+\left(-3-2i\right) ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
x^{3}-6x^{2}+13x+x^{2}-6x+13
-6x ni olish uchun \left(-3-2i\right)x va \left(-3+2i\right)x ni birlashtirish.
x^{3}-5x^{2}+13x-6x+13
-5x^{2} ni olish uchun -6x^{2} va x^{2} ni birlashtirish.
x^{3}-5x^{2}+7x+13
7x ni olish uchun 13x va -6x ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}