Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+5x+4=5
x+1 ga x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+5x+4-5=0
Ikkala tarafdan 5 ni ayirish.
x^{2}+5x-1=0
-1 olish uchun 4 dan 5 ni ayirish.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 5 ni b va -1 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\left(-1\right)}}{2}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25+4}}{2}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{29}}{2}
25 ni 4 ga qo'shish.
x=\frac{\sqrt{29}-5}{2}
x=\frac{-5±\sqrt{29}}{2} tenglamasini yeching, bunda ± musbat. -5 ni \sqrt{29} ga qo'shish.
x=\frac{-\sqrt{29}-5}{2}
x=\frac{-5±\sqrt{29}}{2} tenglamasini yeching, bunda ± manfiy. -5 dan \sqrt{29} ni ayirish.
x=\frac{\sqrt{29}-5}{2} x=\frac{-\sqrt{29}-5}{2}
Tenglama yechildi.
x^{2}+5x+4=5
x+1 ga x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+5x=5-4
Ikkala tarafdan 4 ni ayirish.
x^{2}+5x=1
1 olish uchun 5 dan 4 ni ayirish.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=1+\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=1+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
x^{2}+5x+\frac{25}{4}=\frac{29}{4}
1 ni \frac{25}{4} ga qo'shish.
\left(x+\frac{5}{2}\right)^{2}=\frac{29}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{\sqrt{29}}{2} x+\frac{5}{2}=-\frac{\sqrt{29}}{2}
Qisqartirish.
x=\frac{\sqrt{29}-5}{2} x=\frac{-\sqrt{29}-5}{2}
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.