x uchun yechish (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{-\sqrt{2}y^{2}+y^{2}+\sqrt{2}}-1}{1-y^{2}}\text{; }x=-\frac{\sqrt{-\sqrt{2}y^{2}+y^{2}+\sqrt{2}}+1}{1-y^{2}}\text{, }&y\neq 1\text{ and }y\neq -1\\x=\frac{\sqrt{2}-1}{2}\approx 0,207106781\text{, }&y=1\text{ or }y=-1\end{matrix}\right,
y uchun yechish (complex solution)
y=-\frac{\sqrt{x^{2}+2x+1-\sqrt{2}}}{x}
y=\frac{\sqrt{x^{2}+2x+1-\sqrt{2}}}{x}\text{, }x\neq 0
x uchun yechish
\left\{\begin{matrix}x=\frac{\sqrt{-\sqrt{2}y^{2}+y^{2}+\sqrt{2}}-1}{1-y^{2}}\text{; }x=-\frac{\sqrt{-\sqrt{2}y^{2}+y^{2}+\sqrt{2}}+1}{1-y^{2}}\text{, }&|y|\neq 1\text{ and }|y|\leq \sqrt[4]{2}\sqrt{\sqrt{2}+1}\\x=\frac{\sqrt{2}-1}{2}\text{, }&|y|=1\end{matrix}\right,
y uchun yechish
y=-\frac{\sqrt{x^{2}+2x+1-\sqrt{2}}}{x}
y=\frac{\sqrt{x^{2}+2x+1-\sqrt{2}}}{x}\text{, }x\geq \sqrt[4]{2}-1\text{ or }x\leq -\sqrt[4]{2}-1
Grafik
Baham ko'rish
Klipbordga nusxa olish
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}