y uchun yechish
y=-\frac{\left(x-4\right)\left(x+6\right)}{25}
x uchun yechish (complex solution)
x=-5\sqrt{1-y}-1
x=5\sqrt{1-y}-1
x uchun yechish
x=-5\sqrt{1-y}-1
x=5\sqrt{1-y}-1\text{, }y\leq 1
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+2x+1=-25\left(y-1\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+2x+1=-25y+25
-25 ga y-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-25y+25=x^{2}+2x+1
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-25y=x^{2}+2x+1-25
Ikkala tarafdan 25 ni ayirish.
-25y=x^{2}+2x-24
-24 olish uchun 1 dan 25 ni ayirish.
\frac{-25y}{-25}=\frac{\left(x-4\right)\left(x+6\right)}{-25}
Ikki tarafini -25 ga bo‘ling.
y=\frac{\left(x-4\right)\left(x+6\right)}{-25}
-25 ga bo'lish -25 ga ko'paytirishni bekor qiladi.
y=-\frac{\left(x-4\right)\left(x+6\right)}{25}
\left(-4+x\right)\left(6+x\right) ni -25 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}