Baholash
x^{2}+\frac{x}{12}-\frac{1}{12}
Kengaytirish
x^{2}+\frac{x}{12}-\frac{1}{12}
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+x\left(-\frac{1}{4}\right)+\frac{1}{3}x+\frac{1}{3}\left(-\frac{1}{4}\right)
x+\frac{1}{3} ifodaning har bir elementini x-\frac{1}{4} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
x^{2}+\frac{1}{12}x+\frac{1}{3}\left(-\frac{1}{4}\right)
\frac{1}{12}x ni olish uchun x\left(-\frac{1}{4}\right) va \frac{1}{3}x ni birlashtirish.
x^{2}+\frac{1}{12}x+\frac{1\left(-1\right)}{3\times 4}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{3} ni -\frac{1}{4} ga ko‘paytiring.
x^{2}+\frac{1}{12}x+\frac{-1}{12}
\frac{1\left(-1\right)}{3\times 4} kasridagi ko‘paytirishlarni bajaring.
x^{2}+\frac{1}{12}x-\frac{1}{12}
\frac{-1}{12} kasri manfiy belgini olib tashlash bilan -\frac{1}{12} sifatida qayta yozilishi mumkin.
x^{2}+x\left(-\frac{1}{4}\right)+\frac{1}{3}x+\frac{1}{3}\left(-\frac{1}{4}\right)
x+\frac{1}{3} ifodaning har bir elementini x-\frac{1}{4} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
x^{2}+\frac{1}{12}x+\frac{1}{3}\left(-\frac{1}{4}\right)
\frac{1}{12}x ni olish uchun x\left(-\frac{1}{4}\right) va \frac{1}{3}x ni birlashtirish.
x^{2}+\frac{1}{12}x+\frac{1\left(-1\right)}{3\times 4}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{3} ni -\frac{1}{4} ga ko‘paytiring.
x^{2}+\frac{1}{12}x+\frac{-1}{12}
\frac{1\left(-1\right)}{3\times 4} kasridagi ko‘paytirishlarni bajaring.
x^{2}+\frac{1}{12}x-\frac{1}{12}
\frac{-1}{12} kasri manfiy belgini olib tashlash bilan -\frac{1}{12} sifatida qayta yozilishi mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}