v uchun yechish
v=-1
v=7
Baham ko'rish
Klipbordga nusxa olish
v^{2}+8v+16=2v^{2}+2v+9
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(v+4\right)^{2} kengaytirilishi uchun ishlating.
v^{2}+8v+16-2v^{2}=2v+9
Ikkala tarafdan 2v^{2} ni ayirish.
-v^{2}+8v+16=2v+9
-v^{2} ni olish uchun v^{2} va -2v^{2} ni birlashtirish.
-v^{2}+8v+16-2v=9
Ikkala tarafdan 2v ni ayirish.
-v^{2}+6v+16=9
6v ni olish uchun 8v va -2v ni birlashtirish.
-v^{2}+6v+16-9=0
Ikkala tarafdan 9 ni ayirish.
-v^{2}+6v+7=0
7 olish uchun 16 dan 9 ni ayirish.
a+b=6 ab=-7=-7
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -v^{2}+av+bv+7 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=7 b=-1
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. Faqat bundan juftlik tizim yechimidir.
\left(-v^{2}+7v\right)+\left(-v+7\right)
-v^{2}+6v+7 ni \left(-v^{2}+7v\right)+\left(-v+7\right) sifatida qaytadan yozish.
-v\left(v-7\right)-\left(v-7\right)
Birinchi guruhda -v ni va ikkinchi guruhda -1 ni faktordan chiqaring.
\left(v-7\right)\left(-v-1\right)
Distributiv funktsiyasidan foydalangan holda v-7 umumiy terminini chiqaring.
v=7 v=-1
Tenglamani yechish uchun v-7=0 va -v-1=0 ni yeching.
v^{2}+8v+16=2v^{2}+2v+9
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(v+4\right)^{2} kengaytirilishi uchun ishlating.
v^{2}+8v+16-2v^{2}=2v+9
Ikkala tarafdan 2v^{2} ni ayirish.
-v^{2}+8v+16=2v+9
-v^{2} ni olish uchun v^{2} va -2v^{2} ni birlashtirish.
-v^{2}+8v+16-2v=9
Ikkala tarafdan 2v ni ayirish.
-v^{2}+6v+16=9
6v ni olish uchun 8v va -2v ni birlashtirish.
-v^{2}+6v+16-9=0
Ikkala tarafdan 9 ni ayirish.
-v^{2}+6v+7=0
7 olish uchun 16 dan 9 ni ayirish.
v=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 7}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 6 ni b va 7 ni c bilan almashtiring.
v=\frac{-6±\sqrt{36-4\left(-1\right)\times 7}}{2\left(-1\right)}
6 kvadratini chiqarish.
v=\frac{-6±\sqrt{36+4\times 7}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
v=\frac{-6±\sqrt{36+28}}{2\left(-1\right)}
4 ni 7 marotabaga ko'paytirish.
v=\frac{-6±\sqrt{64}}{2\left(-1\right)}
36 ni 28 ga qo'shish.
v=\frac{-6±8}{2\left(-1\right)}
64 ning kvadrat ildizini chiqarish.
v=\frac{-6±8}{-2}
2 ni -1 marotabaga ko'paytirish.
v=\frac{2}{-2}
v=\frac{-6±8}{-2} tenglamasini yeching, bunda ± musbat. -6 ni 8 ga qo'shish.
v=-1
2 ni -2 ga bo'lish.
v=-\frac{14}{-2}
v=\frac{-6±8}{-2} tenglamasini yeching, bunda ± manfiy. -6 dan 8 ni ayirish.
v=7
-14 ni -2 ga bo'lish.
v=-1 v=7
Tenglama yechildi.
v^{2}+8v+16=2v^{2}+2v+9
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(v+4\right)^{2} kengaytirilishi uchun ishlating.
v^{2}+8v+16-2v^{2}=2v+9
Ikkala tarafdan 2v^{2} ni ayirish.
-v^{2}+8v+16=2v+9
-v^{2} ni olish uchun v^{2} va -2v^{2} ni birlashtirish.
-v^{2}+8v+16-2v=9
Ikkala tarafdan 2v ni ayirish.
-v^{2}+6v+16=9
6v ni olish uchun 8v va -2v ni birlashtirish.
-v^{2}+6v=9-16
Ikkala tarafdan 16 ni ayirish.
-v^{2}+6v=-7
-7 olish uchun 9 dan 16 ni ayirish.
\frac{-v^{2}+6v}{-1}=-\frac{7}{-1}
Ikki tarafini -1 ga bo‘ling.
v^{2}+\frac{6}{-1}v=-\frac{7}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
v^{2}-6v=-\frac{7}{-1}
6 ni -1 ga bo'lish.
v^{2}-6v=7
-7 ni -1 ga bo'lish.
v^{2}-6v+\left(-3\right)^{2}=7+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
v^{2}-6v+9=7+9
-3 kvadratini chiqarish.
v^{2}-6v+9=16
7 ni 9 ga qo'shish.
\left(v-3\right)^{2}=16
v^{2}-6v+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(v-3\right)^{2}}=\sqrt{16}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
v-3=4 v-3=-4
Qisqartirish.
v=7 v=-1
3 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}