Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6t^{2}-6t+2-t-8
6t^{2} ni olish uchun t^{2} va 5t^{2} ni birlashtirish.
6t^{2}-7t+2-8
-7t ni olish uchun -6t va -t ni birlashtirish.
6t^{2}-7t-6
-6 olish uchun 2 dan 8 ni ayirish.
factor(6t^{2}-6t+2-t-8)
6t^{2} ni olish uchun t^{2} va 5t^{2} ni birlashtirish.
factor(6t^{2}-7t+2-8)
-7t ni olish uchun -6t va -t ni birlashtirish.
factor(6t^{2}-7t-6)
-6 olish uchun 2 dan 8 ni ayirish.
6t^{2}-7t-6=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
t=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-6\right)}}{2\times 6}
-7 kvadratini chiqarish.
t=\frac{-\left(-7\right)±\sqrt{49-24\left(-6\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
t=\frac{-\left(-7\right)±\sqrt{49+144}}{2\times 6}
-24 ni -6 marotabaga ko'paytirish.
t=\frac{-\left(-7\right)±\sqrt{193}}{2\times 6}
49 ni 144 ga qo'shish.
t=\frac{7±\sqrt{193}}{2\times 6}
-7 ning teskarisi 7 ga teng.
t=\frac{7±\sqrt{193}}{12}
2 ni 6 marotabaga ko'paytirish.
t=\frac{\sqrt{193}+7}{12}
t=\frac{7±\sqrt{193}}{12} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{193} ga qo'shish.
t=\frac{7-\sqrt{193}}{12}
t=\frac{7±\sqrt{193}}{12} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{193} ni ayirish.
6t^{2}-7t-6=6\left(t-\frac{\sqrt{193}+7}{12}\right)\left(t-\frac{7-\sqrt{193}}{12}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{7+\sqrt{193}}{12} ga va x_{2} uchun \frac{7-\sqrt{193}}{12} ga bo‘ling.