Baholash
n^{2}-8
n ga nisbatan hosilani topish
2n
Baham ko'rish
Klipbordga nusxa olish
n^{2}-\left(2\sqrt{2}\right)^{2}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
n^{2}-2^{2}\left(\sqrt{2}\right)^{2}
\left(2\sqrt{2}\right)^{2} ni kengaytirish.
n^{2}-4\left(\sqrt{2}\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
n^{2}-4\times 2
\sqrt{2} kvadrati – 2.
n^{2}-8
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-\left(2\sqrt{2}\right)^{2})
Hisoblang: \left(n-2\sqrt{2}\right)\left(n+2\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-2^{2}\left(\sqrt{2}\right)^{2})
\left(2\sqrt{2}\right)^{2} ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-4\left(\sqrt{2}\right)^{2})
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-4\times 2)
\sqrt{2} kvadrati – 2.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-8)
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
2n^{2-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
2n^{1}
2 dan 1 ni ayirish.
2n
Har qanday t sharti uchun t^{1}=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}