y uchun yechish
y=-\frac{n^{2}-6n-168}{n-6}
n\neq 6
n uchun yechish
n=\frac{\sqrt{y^{2}+12y+708}}{2}-\frac{y}{2}+3
n=-\frac{\sqrt{y^{2}+12y+708}}{2}-\frac{y}{2}+3
Grafik
Baham ko'rish
Klipbordga nusxa olish
n^{2}-6n+yn-6y=168
n+y ga n-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6n+yn-6y=168-n^{2}
Ikkala tarafdan n^{2} ni ayirish.
yn-6y=168-n^{2}+6n
6n ni ikki tarafga qo’shing.
\left(n-6\right)y=168-n^{2}+6n
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(n-6\right)y=168+6n-n^{2}
Tenglama standart shaklda.
\frac{\left(n-6\right)y}{n-6}=\frac{168+6n-n^{2}}{n-6}
Ikki tarafini n-6 ga bo‘ling.
y=\frac{168+6n-n^{2}}{n-6}
n-6 ga bo'lish n-6 ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}