m uchun yechish (complex solution)
m\in \mathrm{C}
n uchun yechish (complex solution)
n\in \mathrm{C}
m uchun yechish
m\in \mathrm{R}
n uchun yechish
n\in \mathrm{R}
Baham ko'rish
Klipbordga nusxa olish
mp+mq+2np+2nq=m\left(p+q\right)+2n\left(p+q\right)
m+2n ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq=mp+mq+2n\left(p+q\right)
m ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq=mp+mq+2np+2nq
2n ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq-mp=mq+2np+2nq
Ikkala tarafdan mp ni ayirish.
mq+2np+2nq=mq+2np+2nq
0 ni olish uchun mp va -mp ni birlashtirish.
mq+2np+2nq-mq=2np+2nq
Ikkala tarafdan mq ni ayirish.
2np+2nq=2np+2nq
0 ni olish uchun mq va -mq ni birlashtirish.
\text{true}
Shartlarni qayta saralash.
m\in \mathrm{C}
Bu har qanday m uchun to‘g‘ri.
mp+mq+2np+2nq=m\left(p+q\right)+2n\left(p+q\right)
m+2n ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq=mp+mq+2n\left(p+q\right)
m ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq=mp+mq+2np+2nq
2n ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq-2np=mp+mq+2nq
Ikkala tarafdan 2np ni ayirish.
mp+mq+2nq=mp+mq+2nq
0 ni olish uchun 2np va -2np ni birlashtirish.
mp+mq+2nq-2nq=mp+mq
Ikkala tarafdan 2nq ni ayirish.
mp+mq=mp+mq
0 ni olish uchun 2nq va -2nq ni birlashtirish.
\text{true}
Shartlarni qayta saralash.
n\in \mathrm{C}
Bu har qanday n uchun to‘g‘ri.
mp+mq+2np+2nq=m\left(p+q\right)+2n\left(p+q\right)
m+2n ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq=mp+mq+2n\left(p+q\right)
m ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq=mp+mq+2np+2nq
2n ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq-mp=mq+2np+2nq
Ikkala tarafdan mp ni ayirish.
mq+2np+2nq=mq+2np+2nq
0 ni olish uchun mp va -mp ni birlashtirish.
mq+2np+2nq-mq=2np+2nq
Ikkala tarafdan mq ni ayirish.
2np+2nq=2np+2nq
0 ni olish uchun mq va -mq ni birlashtirish.
\text{true}
Shartlarni qayta saralash.
m\in \mathrm{R}
Bu har qanday m uchun to‘g‘ri.
mp+mq+2np+2nq=m\left(p+q\right)+2n\left(p+q\right)
m+2n ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq=mp+mq+2n\left(p+q\right)
m ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq=mp+mq+2np+2nq
2n ga p+q ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mp+mq+2np+2nq-2np=mp+mq+2nq
Ikkala tarafdan 2np ni ayirish.
mp+mq+2nq=mp+mq+2nq
0 ni olish uchun 2np va -2np ni birlashtirish.
mp+mq+2nq-2nq=mp+mq
Ikkala tarafdan 2nq ni ayirish.
mp+mq=mp+mq
0 ni olish uchun 2nq va -2nq ni birlashtirish.
\text{true}
Shartlarni qayta saralash.
n\in \mathrm{R}
Bu har qanday n uchun to‘g‘ri.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}