Asosiy tarkibga oʻtish
k uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

k^{3}+6k^{2}+12k+8-k^{3}=20
\left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} binom teoremasini \left(k+2\right)^{3} kengaytirilishi uchun ishlating.
6k^{2}+12k+8=20
0 ni olish uchun k^{3} va -k^{3} ni birlashtirish.
6k^{2}+12k+8-20=0
Ikkala tarafdan 20 ni ayirish.
6k^{2}+12k-12=0
-12 olish uchun 8 dan 20 ni ayirish.
k=\frac{-12±\sqrt{12^{2}-4\times 6\left(-12\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 12 ni b va -12 ni c bilan almashtiring.
k=\frac{-12±\sqrt{144-4\times 6\left(-12\right)}}{2\times 6}
12 kvadratini chiqarish.
k=\frac{-12±\sqrt{144-24\left(-12\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
k=\frac{-12±\sqrt{144+288}}{2\times 6}
-24 ni -12 marotabaga ko'paytirish.
k=\frac{-12±\sqrt{432}}{2\times 6}
144 ni 288 ga qo'shish.
k=\frac{-12±12\sqrt{3}}{2\times 6}
432 ning kvadrat ildizini chiqarish.
k=\frac{-12±12\sqrt{3}}{12}
2 ni 6 marotabaga ko'paytirish.
k=\frac{12\sqrt{3}-12}{12}
k=\frac{-12±12\sqrt{3}}{12} tenglamasini yeching, bunda ± musbat. -12 ni 12\sqrt{3} ga qo'shish.
k=\sqrt{3}-1
-12+12\sqrt{3} ni 12 ga bo'lish.
k=\frac{-12\sqrt{3}-12}{12}
k=\frac{-12±12\sqrt{3}}{12} tenglamasini yeching, bunda ± manfiy. -12 dan 12\sqrt{3} ni ayirish.
k=-\sqrt{3}-1
-12-12\sqrt{3} ni 12 ga bo'lish.
k=\sqrt{3}-1 k=-\sqrt{3}-1
Tenglama yechildi.
k^{3}+6k^{2}+12k+8-k^{3}=20
\left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} binom teoremasini \left(k+2\right)^{3} kengaytirilishi uchun ishlating.
6k^{2}+12k+8=20
0 ni olish uchun k^{3} va -k^{3} ni birlashtirish.
6k^{2}+12k=20-8
Ikkala tarafdan 8 ni ayirish.
6k^{2}+12k=12
12 olish uchun 20 dan 8 ni ayirish.
\frac{6k^{2}+12k}{6}=\frac{12}{6}
Ikki tarafini 6 ga bo‘ling.
k^{2}+\frac{12}{6}k=\frac{12}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
k^{2}+2k=\frac{12}{6}
12 ni 6 ga bo'lish.
k^{2}+2k=2
12 ni 6 ga bo'lish.
k^{2}+2k+1^{2}=2+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
k^{2}+2k+1=2+1
1 kvadratini chiqarish.
k^{2}+2k+1=3
2 ni 1 ga qo'shish.
\left(k+1\right)^{2}=3
k^{2}+2k+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(k+1\right)^{2}}=\sqrt{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
k+1=\sqrt{3} k+1=-\sqrt{3}
Qisqartirish.
k=\sqrt{3}-1 k=-\sqrt{3}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.