k uchun yechish
k=\frac{\sqrt{105}}{20}-\frac{1}{4}\approx 0,262347538
k=-\frac{\sqrt{105}}{20}-\frac{1}{4}\approx -0,762347538
Baham ko'rish
Klipbordga nusxa olish
k^{2}+\frac{1}{2}k+\frac{1}{16}-\frac{1}{16}-\frac{1}{5}=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(k+\frac{1}{4}\right)^{2} kengaytirilishi uchun ishlating.
k^{2}+\frac{1}{2}k-\frac{1}{5}=0
0 olish uchun \frac{1}{16} dan \frac{1}{16} ni ayirish.
k=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-\frac{1}{5}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, \frac{1}{2} ni b va -\frac{1}{5} ni c bilan almashtiring.
k=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-\frac{1}{5}\right)}}{2}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
k=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+\frac{4}{5}}}{2}
-4 ni -\frac{1}{5} marotabaga ko'paytirish.
k=\frac{-\frac{1}{2}±\sqrt{\frac{21}{20}}}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{4} ni \frac{4}{5} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
k=\frac{-\frac{1}{2}±\frac{\sqrt{105}}{10}}{2}
\frac{21}{20} ning kvadrat ildizini chiqarish.
k=\frac{\frac{\sqrt{105}}{10}-\frac{1}{2}}{2}
k=\frac{-\frac{1}{2}±\frac{\sqrt{105}}{10}}{2} tenglamasini yeching, bunda ± musbat. -\frac{1}{2} ni \frac{\sqrt{105}}{10} ga qo'shish.
k=\frac{\sqrt{105}}{20}-\frac{1}{4}
-\frac{1}{2}+\frac{\sqrt{105}}{10} ni 2 ga bo'lish.
k=\frac{-\frac{\sqrt{105}}{10}-\frac{1}{2}}{2}
k=\frac{-\frac{1}{2}±\frac{\sqrt{105}}{10}}{2} tenglamasini yeching, bunda ± manfiy. -\frac{1}{2} dan \frac{\sqrt{105}}{10} ni ayirish.
k=-\frac{\sqrt{105}}{20}-\frac{1}{4}
-\frac{1}{2}-\frac{\sqrt{105}}{10} ni 2 ga bo'lish.
k=\frac{\sqrt{105}}{20}-\frac{1}{4} k=-\frac{\sqrt{105}}{20}-\frac{1}{4}
Tenglama yechildi.
k^{2}+\frac{1}{2}k+\frac{1}{16}-\frac{1}{16}-\frac{1}{5}=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(k+\frac{1}{4}\right)^{2} kengaytirilishi uchun ishlating.
k^{2}+\frac{1}{2}k-\frac{1}{5}=0
0 olish uchun \frac{1}{16} dan \frac{1}{16} ni ayirish.
k^{2}+\frac{1}{2}k=\frac{1}{5}
\frac{1}{5} ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
k^{2}+\frac{1}{2}k+\left(\frac{1}{4}\right)^{2}=\frac{1}{5}+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
k^{2}+\frac{1}{2}k+\frac{1}{16}=\frac{1}{5}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
k^{2}+\frac{1}{2}k+\frac{1}{16}=\frac{21}{80}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{5} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(k+\frac{1}{4}\right)^{2}=\frac{21}{80}
k^{2}+\frac{1}{2}k+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(k+\frac{1}{4}\right)^{2}}=\sqrt{\frac{21}{80}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
k+\frac{1}{4}=\frac{\sqrt{105}}{20} k+\frac{1}{4}=-\frac{\sqrt{105}}{20}
Qisqartirish.
k=\frac{\sqrt{105}}{20}-\frac{1}{4} k=-\frac{\sqrt{105}}{20}-\frac{1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}