Asosiy tarkibga oʻtish
c uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

c^{2}+14c+49-4\left(1+7\right)+3=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(c+7\right)^{2} kengaytirilishi uchun ishlating.
c^{2}+14c+49-4\times 8+3=0
8 olish uchun 1 va 7'ni qo'shing.
c^{2}+14c+49-32+3=0
32 hosil qilish uchun 4 va 8 ni ko'paytirish.
c^{2}+14c+17+3=0
17 olish uchun 49 dan 32 ni ayirish.
c^{2}+14c+20=0
20 olish uchun 17 va 3'ni qo'shing.
c=\frac{-14±\sqrt{14^{2}-4\times 20}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 14 ni b va 20 ni c bilan almashtiring.
c=\frac{-14±\sqrt{196-4\times 20}}{2}
14 kvadratini chiqarish.
c=\frac{-14±\sqrt{196-80}}{2}
-4 ni 20 marotabaga ko'paytirish.
c=\frac{-14±\sqrt{116}}{2}
196 ni -80 ga qo'shish.
c=\frac{-14±2\sqrt{29}}{2}
116 ning kvadrat ildizini chiqarish.
c=\frac{2\sqrt{29}-14}{2}
c=\frac{-14±2\sqrt{29}}{2} tenglamasini yeching, bunda ± musbat. -14 ni 2\sqrt{29} ga qo'shish.
c=\sqrt{29}-7
-14+2\sqrt{29} ni 2 ga bo'lish.
c=\frac{-2\sqrt{29}-14}{2}
c=\frac{-14±2\sqrt{29}}{2} tenglamasini yeching, bunda ± manfiy. -14 dan 2\sqrt{29} ni ayirish.
c=-\sqrt{29}-7
-14-2\sqrt{29} ni 2 ga bo'lish.
c=\sqrt{29}-7 c=-\sqrt{29}-7
Tenglama yechildi.
c^{2}+14c+49-4\left(1+7\right)+3=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(c+7\right)^{2} kengaytirilishi uchun ishlating.
c^{2}+14c+49-4\times 8+3=0
8 olish uchun 1 va 7'ni qo'shing.
c^{2}+14c+49-32+3=0
32 hosil qilish uchun 4 va 8 ni ko'paytirish.
c^{2}+14c+17+3=0
17 olish uchun 49 dan 32 ni ayirish.
c^{2}+14c+20=0
20 olish uchun 17 va 3'ni qo'shing.
c^{2}+14c=-20
Ikkala tarafdan 20 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
c^{2}+14c+7^{2}=-20+7^{2}
14 ni bo‘lish, x shartining koeffitsienti, 2 ga 7 olish uchun. Keyin, 7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
c^{2}+14c+49=-20+49
7 kvadratini chiqarish.
c^{2}+14c+49=29
-20 ni 49 ga qo'shish.
\left(c+7\right)^{2}=29
c^{2}+14c+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(c+7\right)^{2}}=\sqrt{29}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
c+7=\sqrt{29} c+7=-\sqrt{29}
Qisqartirish.
c=\sqrt{29}-7 c=-\sqrt{29}-7
Tenglamaning ikkala tarafidan 7 ni ayirish.