x uchun yechish
x=\frac{a}{2}+\frac{9}{2a}
a\neq 0
a uchun yechish (complex solution)
a=-\sqrt{x^{2}-9}+x
a=\sqrt{x^{2}-9}+x
a uchun yechish
a=-\sqrt{x^{2}-9}+x
a=\sqrt{x^{2}-9}+x\text{, }|x|\geq 3
Grafik
Baham ko'rish
Klipbordga nusxa olish
a^{2}-2ax+x^{2}+3^{2}=x^{2}
\left(p-q\right)^{2}=p^{2}-2pq+q^{2} binom teoremasini \left(a-x\right)^{2} kengaytirilishi uchun ishlating.
a^{2}-2ax+x^{2}+9=x^{2}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
a^{2}-2ax+x^{2}+9-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
a^{2}-2ax+9=0
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
-2ax+9=-a^{2}
Ikkala tarafdan a^{2} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-2ax=-a^{2}-9
Ikkala tarafdan 9 ni ayirish.
\left(-2a\right)x=-a^{2}-9
Tenglama standart shaklda.
\frac{\left(-2a\right)x}{-2a}=\frac{-a^{2}-9}{-2a}
Ikki tarafini -2a ga bo‘ling.
x=\frac{-a^{2}-9}{-2a}
-2a ga bo'lish -2a ga ko'paytirishni bekor qiladi.
x=\frac{a}{2}+\frac{9}{2a}
-a^{2}-9 ni -2a ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}