Asosiy tarkibga oʻtish
Baholash
Tick mark Image
a ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a-b ni \frac{a+b}{a+b} marotabaga ko'paytirish.
\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a}
\frac{\left(a-b\right)\left(a+b\right)}{a+b} va \frac{b^{2}}{a+b} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a}
\left(a-b\right)\left(a+b\right)+b^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{a^{2}}{a+b}\times \frac{a+b}{a}
a^{2}+ab-ba-b^{2}+b^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{a^{2}}{a+b} ni \frac{a+b}{a} ga ko‘paytiring.
a
Surat va maxrajdagi ikkala a\left(a+b\right) ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a-b ni \frac{a+b}{a+b} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a})
\frac{\left(a-b\right)\left(a+b\right)}{a+b} va \frac{b^{2}}{a+b} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a})
\left(a-b\right)\left(a+b\right)+b^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}}{a+b}\times \frac{a+b}{a})
a^{2}+ab-ba-b^{2}+b^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a})
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{a^{2}}{a+b} ni \frac{a+b}{a} ga ko‘paytiring.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Surat va maxrajdagi ikkala a\left(a+b\right) ni qisqartiring.
a^{1-1}
ax^{n} hosilasi – nax^{n-1}.
a^{0}
1 dan 1 ni ayirish.
1
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.