b uchun yechish
b=\frac{ia}{3}+\left(1-3i\right)
a uchun yechish
a=9+3i-3ib
Baham ko'rish
Klipbordga nusxa olish
a-2+3ib+i=7+4i
3b+1 ga i ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2+3ib+i=7+4i-a
Ikkala tarafdan a ni ayirish.
3ib+i=7+4i-a+2
2 ni ikki tarafga qo’shing.
3ib+i=-a+9+4i
7+4i+2 ichida qo‘shishlarni bajaring.
3ib=-a+9+4i-i
Ikkala tarafdan i ni ayirish.
3ib=-a+9+3i
9+4i-i ichida qo‘shishlarni bajaring.
3ib=9+3i-a
Tenglama standart shaklda.
\frac{3ib}{3i}=\frac{9+3i-a}{3i}
Ikki tarafini 3i ga bo‘ling.
b=\frac{9+3i-a}{3i}
3i ga bo'lish 3i ga ko'paytirishni bekor qiladi.
b=\frac{ia}{3}+\left(1-3i\right)
-a+\left(9+3i\right) ni 3i ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}