a uchun yechish
a=-5
a=0
Baham ko'rish
Klipbordga nusxa olish
a-9a^{2}=46a
Ikkala tarafdan 9a^{2} ni ayirish.
a-9a^{2}-46a=0
Ikkala tarafdan 46a ni ayirish.
-45a-9a^{2}=0
-45a ni olish uchun a va -46a ni birlashtirish.
a\left(-45-9a\right)=0
a omili.
a=0 a=-5
Tenglamani yechish uchun a=0 va -45-9a=0 ni yeching.
a-9a^{2}=46a
Ikkala tarafdan 9a^{2} ni ayirish.
a-9a^{2}-46a=0
Ikkala tarafdan 46a ni ayirish.
-45a-9a^{2}=0
-45a ni olish uchun a va -46a ni birlashtirish.
-9a^{2}-45a=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-45\right)±\sqrt{\left(-45\right)^{2}}}{2\left(-9\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -9 ni a, -45 ni b va 0 ni c bilan almashtiring.
a=\frac{-\left(-45\right)±45}{2\left(-9\right)}
\left(-45\right)^{2} ning kvadrat ildizini chiqarish.
a=\frac{45±45}{2\left(-9\right)}
-45 ning teskarisi 45 ga teng.
a=\frac{45±45}{-18}
2 ni -9 marotabaga ko'paytirish.
a=\frac{90}{-18}
a=\frac{45±45}{-18} tenglamasini yeching, bunda ± musbat. 45 ni 45 ga qo'shish.
a=-5
90 ni -18 ga bo'lish.
a=\frac{0}{-18}
a=\frac{45±45}{-18} tenglamasini yeching, bunda ± manfiy. 45 dan 45 ni ayirish.
a=0
0 ni -18 ga bo'lish.
a=-5 a=0
Tenglama yechildi.
a-9a^{2}=46a
Ikkala tarafdan 9a^{2} ni ayirish.
a-9a^{2}-46a=0
Ikkala tarafdan 46a ni ayirish.
-45a-9a^{2}=0
-45a ni olish uchun a va -46a ni birlashtirish.
-9a^{2}-45a=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-9a^{2}-45a}{-9}=\frac{0}{-9}
Ikki tarafini -9 ga bo‘ling.
a^{2}+\left(-\frac{45}{-9}\right)a=\frac{0}{-9}
-9 ga bo'lish -9 ga ko'paytirishni bekor qiladi.
a^{2}+5a=\frac{0}{-9}
-45 ni -9 ga bo'lish.
a^{2}+5a=0
0 ni -9 ga bo'lish.
a^{2}+5a+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+5a+\frac{25}{4}=\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
\left(a+\frac{5}{2}\right)^{2}=\frac{25}{4}
a^{2}+5a+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+\frac{5}{2}=\frac{5}{2} a+\frac{5}{2}=-\frac{5}{2}
Qisqartirish.
a=0 a=-5
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}