Baholash
4\left(ab\right)^{2}
Kengaytirish
4\left(ab\right)^{2}
Baham ko'rish
Klipbordga nusxa olish
a^{4}+22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-\left(a+b\right)\left(a-3b\right)\left(a-b\right)\left(a+3b\right)-4ab\left(2a^{2}+7ab+6b^{2}\right)
a^{2}+4ab+3b^{2} kvadratini chiqarish.
a^{4}+22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-\left(a^{2}-2ab-3b^{2}\right)\left(a-b\right)\left(a+3b\right)-4ab\left(2a^{2}+7ab+6b^{2}\right)
a+b ga a-3b ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
a^{4}+22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-\left(a^{3}-3a^{2}b-ab^{2}+3b^{3}\right)\left(a+3b\right)-4ab\left(2a^{2}+7ab+6b^{2}\right)
a^{2}-2ab-3b^{2} ga a-b ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
a^{4}+22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-\left(a^{4}-10a^{2}b^{2}+9b^{4}\right)-4ab\left(2a^{2}+7ab+6b^{2}\right)
a^{3}-3a^{2}b-ab^{2}+3b^{3} ga a+3b ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
a^{4}+22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-a^{4}+10a^{2}b^{2}-9b^{4}-4ab\left(2a^{2}+7ab+6b^{2}\right)
a^{4}-10a^{2}b^{2}+9b^{4} teskarisini topish uchun har birining teskarisini toping.
22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}+10a^{2}b^{2}-9b^{4}-4ab\left(2a^{2}+7ab+6b^{2}\right)
0 ni olish uchun a^{4} va -a^{4} ni birlashtirish.
32a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-9b^{4}-4ab\left(2a^{2}+7ab+6b^{2}\right)
32a^{2}b^{2} ni olish uchun 22a^{2}b^{2} va 10a^{2}b^{2} ni birlashtirish.
32a^{2}b^{2}+24ab^{3}+8ba^{3}-4ab\left(2a^{2}+7ab+6b^{2}\right)
0 ni olish uchun 9b^{4} va -9b^{4} ni birlashtirish.
32a^{2}b^{2}+24ab^{3}+8ba^{3}-8a^{3}b-28a^{2}b^{2}-24ab^{3}
-4ab ga 2a^{2}+7ab+6b^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
32a^{2}b^{2}+24ab^{3}-28a^{2}b^{2}-24ab^{3}
0 ni olish uchun 8ba^{3} va -8a^{3}b ni birlashtirish.
4a^{2}b^{2}+24ab^{3}-24ab^{3}
4a^{2}b^{2} ni olish uchun 32a^{2}b^{2} va -28a^{2}b^{2} ni birlashtirish.
4a^{2}b^{2}
0 ni olish uchun 24ab^{3} va -24ab^{3} ni birlashtirish.
a^{4}+22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-\left(a+b\right)\left(a-3b\right)\left(a-b\right)\left(a+3b\right)-4ab\left(2a^{2}+7ab+6b^{2}\right)
a^{2}+4ab+3b^{2} kvadratini chiqarish.
a^{4}+22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-\left(a^{2}-2ab-3b^{2}\right)\left(a-b\right)\left(a+3b\right)-4ab\left(2a^{2}+7ab+6b^{2}\right)
a+b ga a-3b ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
a^{4}+22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-\left(a^{3}-3a^{2}b-ab^{2}+3b^{3}\right)\left(a+3b\right)-4ab\left(2a^{2}+7ab+6b^{2}\right)
a^{2}-2ab-3b^{2} ga a-b ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
a^{4}+22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-\left(a^{4}-10a^{2}b^{2}+9b^{4}\right)-4ab\left(2a^{2}+7ab+6b^{2}\right)
a^{3}-3a^{2}b-ab^{2}+3b^{3} ga a+3b ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
a^{4}+22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-a^{4}+10a^{2}b^{2}-9b^{4}-4ab\left(2a^{2}+7ab+6b^{2}\right)
a^{4}-10a^{2}b^{2}+9b^{4} teskarisini topish uchun har birining teskarisini toping.
22a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}+10a^{2}b^{2}-9b^{4}-4ab\left(2a^{2}+7ab+6b^{2}\right)
0 ni olish uchun a^{4} va -a^{4} ni birlashtirish.
32a^{2}b^{2}+24ab^{3}+9b^{4}+8ba^{3}-9b^{4}-4ab\left(2a^{2}+7ab+6b^{2}\right)
32a^{2}b^{2} ni olish uchun 22a^{2}b^{2} va 10a^{2}b^{2} ni birlashtirish.
32a^{2}b^{2}+24ab^{3}+8ba^{3}-4ab\left(2a^{2}+7ab+6b^{2}\right)
0 ni olish uchun 9b^{4} va -9b^{4} ni birlashtirish.
32a^{2}b^{2}+24ab^{3}+8ba^{3}-8a^{3}b-28a^{2}b^{2}-24ab^{3}
-4ab ga 2a^{2}+7ab+6b^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
32a^{2}b^{2}+24ab^{3}-28a^{2}b^{2}-24ab^{3}
0 ni olish uchun 8ba^{3} va -8a^{3}b ni birlashtirish.
4a^{2}b^{2}+24ab^{3}-24ab^{3}
4a^{2}b^{2} ni olish uchun 32a^{2}b^{2} va -28a^{2}b^{2} ni birlashtirish.
4a^{2}b^{2}
0 ni olish uchun 24ab^{3} va -24ab^{3} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}