a uchun yechish
a=d^{2}+d-10
d uchun yechish (complex solution)
d=\frac{\sqrt{4a+41}-1}{2}
d=\frac{-\sqrt{4a+41}-1}{2}
d uchun yechish
d=\frac{\sqrt{4a+41}-1}{2}
d=\frac{-\sqrt{4a+41}-1}{2}\text{, }a\geq -\frac{41}{4}
Baham ko'rish
Klipbordga nusxa olish
a^{2}+20a+100=\left(a-d+10\right)\left(a+d+11\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(a+10\right)^{2} kengaytirilishi uchun ishlating.
a^{2}+20a+100=a^{2}+21a-d^{2}-d+110
a-d+10 ga a+d+11 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
a^{2}+20a+100-a^{2}=21a-d^{2}-d+110
Ikkala tarafdan a^{2} ni ayirish.
20a+100=21a-d^{2}-d+110
0 ni olish uchun a^{2} va -a^{2} ni birlashtirish.
20a+100-21a=-d^{2}-d+110
Ikkala tarafdan 21a ni ayirish.
-a+100=-d^{2}-d+110
-a ni olish uchun 20a va -21a ni birlashtirish.
-a=-d^{2}-d+110-100
Ikkala tarafdan 100 ni ayirish.
-a=-d^{2}-d+10
10 olish uchun 110 dan 100 ni ayirish.
-a=10-d-d^{2}
Tenglama standart shaklda.
\frac{-a}{-1}=\frac{10-d-d^{2}}{-1}
Ikki tarafini -1 ga bo‘ling.
a=\frac{10-d-d^{2}}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
a=d^{2}+d-10
-d^{2}-d+10 ni -1 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}