Asosiy tarkibga oʻtish
V_2 uchun yechish (complex solution)
Tick mark Image
V_2 uchun yechish
Tick mark Image
V_1 uchun yechish (complex solution)
Tick mark Image
V_1 uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(V_{1}x-V_{2}x\right)\left(V_{1}+v_{2}\right)=2v_{1}xv_{2}
V_{1}-V_{2} ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
xV_{1}^{2}+V_{1}xv_{2}-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}
V_{1}x-V_{2}x ga V_{1}+v_{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
V_{1}xv_{2}-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}-xV_{1}^{2}
Ikkala tarafdan xV_{1}^{2} ni ayirish.
-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}-xV_{1}^{2}-V_{1}xv_{2}
Ikkala tarafdan V_{1}xv_{2} ni ayirish.
-V_{1}V_{2}x-V_{2}v_{2}x=2v_{1}v_{2}x-V_{1}v_{2}x-xV_{1}^{2}
Shartlarni qayta saralash.
\left(-V_{1}x-v_{2}x\right)V_{2}=2v_{1}v_{2}x-V_{1}v_{2}x-xV_{1}^{2}
V_{2}'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(-V_{1}x-v_{2}x\right)V_{2}=2v_{1}v_{2}x-xV_{1}^{2}-V_{1}v_{2}x
Tenglama standart shaklda.
\frac{\left(-V_{1}x-v_{2}x\right)V_{2}}{-V_{1}x-v_{2}x}=\frac{x\left(-V_{1}v_{2}+2v_{1}v_{2}-V_{1}^{2}\right)}{-V_{1}x-v_{2}x}
Ikki tarafini -V_{1}x-v_{2}x ga bo‘ling.
V_{2}=\frac{x\left(-V_{1}v_{2}+2v_{1}v_{2}-V_{1}^{2}\right)}{-V_{1}x-v_{2}x}
-V_{1}x-v_{2}x ga bo'lish -V_{1}x-v_{2}x ga ko'paytirishni bekor qiladi.
V_{2}=-\frac{2v_{1}v_{2}-V_{1}v_{2}-V_{1}^{2}}{v_{2}+V_{1}}
x\left(2v_{1}v_{2}-V_{1}v_{2}-V_{1}^{2}\right) ni -V_{1}x-v_{2}x ga bo'lish.
\left(V_{1}x-V_{2}x\right)\left(V_{1}+v_{2}\right)=2v_{1}xv_{2}
V_{1}-V_{2} ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
xV_{1}^{2}+V_{1}xv_{2}-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}
V_{1}x-V_{2}x ga V_{1}+v_{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
V_{1}xv_{2}-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}-xV_{1}^{2}
Ikkala tarafdan xV_{1}^{2} ni ayirish.
-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}-xV_{1}^{2}-V_{1}xv_{2}
Ikkala tarafdan V_{1}xv_{2} ni ayirish.
-V_{1}V_{2}x-V_{2}v_{2}x=2v_{1}v_{2}x-V_{1}v_{2}x-xV_{1}^{2}
Shartlarni qayta saralash.
\left(-V_{1}x-v_{2}x\right)V_{2}=2v_{1}v_{2}x-V_{1}v_{2}x-xV_{1}^{2}
V_{2}'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(-V_{1}x-v_{2}x\right)V_{2}=2v_{1}v_{2}x-xV_{1}^{2}-V_{1}v_{2}x
Tenglama standart shaklda.
\frac{\left(-V_{1}x-v_{2}x\right)V_{2}}{-V_{1}x-v_{2}x}=\frac{x\left(-V_{1}v_{2}+2v_{1}v_{2}-V_{1}^{2}\right)}{-V_{1}x-v_{2}x}
Ikki tarafini -V_{1}x-v_{2}x ga bo‘ling.
V_{2}=\frac{x\left(-V_{1}v_{2}+2v_{1}v_{2}-V_{1}^{2}\right)}{-V_{1}x-v_{2}x}
-V_{1}x-v_{2}x ga bo'lish -V_{1}x-v_{2}x ga ko'paytirishni bekor qiladi.
V_{2}=-\frac{2v_{1}v_{2}-V_{1}v_{2}-V_{1}^{2}}{v_{2}+V_{1}}
x\left(2v_{1}v_{2}-V_{1}v_{2}-V_{1}^{2}\right) ni -V_{1}x-v_{2}x ga bo'lish.