Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(9x\right)^{2}-1=1
Hisoblang: \left(9x+1\right)\left(9x-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
9^{2}x^{2}-1=1
\left(9x\right)^{2} ni kengaytirish.
81x^{2}-1=1
2 daraja ko‘rsatkichini 9 ga hisoblang va 81 ni qiymatni oling.
81x^{2}=1+1
1 ni ikki tarafga qo’shing.
81x^{2}=2
2 olish uchun 1 va 1'ni qo'shing.
x^{2}=\frac{2}{81}
Ikki tarafini 81 ga bo‘ling.
x=\frac{\sqrt{2}}{9} x=-\frac{\sqrt{2}}{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\left(9x\right)^{2}-1=1
Hisoblang: \left(9x+1\right)\left(9x-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
9^{2}x^{2}-1=1
\left(9x\right)^{2} ni kengaytirish.
81x^{2}-1=1
2 daraja ko‘rsatkichini 9 ga hisoblang va 81 ni qiymatni oling.
81x^{2}-1-1=0
Ikkala tarafdan 1 ni ayirish.
81x^{2}-2=0
-2 olish uchun -1 dan 1 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 81\left(-2\right)}}{2\times 81}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 81 ni a, 0 ni b va -2 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 81\left(-2\right)}}{2\times 81}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-324\left(-2\right)}}{2\times 81}
-4 ni 81 marotabaga ko'paytirish.
x=\frac{0±\sqrt{648}}{2\times 81}
-324 ni -2 marotabaga ko'paytirish.
x=\frac{0±18\sqrt{2}}{2\times 81}
648 ning kvadrat ildizini chiqarish.
x=\frac{0±18\sqrt{2}}{162}
2 ni 81 marotabaga ko'paytirish.
x=\frac{\sqrt{2}}{9}
x=\frac{0±18\sqrt{2}}{162} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{2}}{9}
x=\frac{0±18\sqrt{2}}{162} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{2}}{9} x=-\frac{\sqrt{2}}{9}
Tenglama yechildi.