m uchun yechish
m=2\times \left(\frac{x}{3x-1}\right)^{2}
x\neq \frac{1}{3}
x uchun yechish (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{m}\left(3\sqrt{m}+\sqrt{2}\right)}{9m-2}\text{; }x=\frac{\sqrt{m}\left(3\sqrt{m}-\sqrt{2}\right)}{9m-2}\text{, }&m\neq \frac{2}{9}\\x=\frac{1}{6}\text{, }&m=\frac{2}{9}\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}x=\frac{\sqrt{m}\left(3\sqrt{m}+\sqrt{2}\right)}{9m-2}\text{; }x=\frac{\sqrt{m}\left(3\sqrt{m}-\sqrt{2}\right)}{9m-2}\text{, }&m\neq \frac{2}{9}\text{ and }m\geq 0\\x=\frac{1}{6}\text{, }&m=\frac{2}{9}\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
9mx^{2}-2x^{2}-6mx+m=0
9m-2 ga x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9mx^{2}-6mx+m=2x^{2}
2x^{2} ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\left(9x^{2}-6x+1\right)m=2x^{2}
m'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(9x^{2}-6x+1\right)m}{9x^{2}-6x+1}=\frac{2x^{2}}{9x^{2}-6x+1}
Ikki tarafini 9x^{2}-6x+1 ga bo‘ling.
m=\frac{2x^{2}}{9x^{2}-6x+1}
9x^{2}-6x+1 ga bo'lish 9x^{2}-6x+1 ga ko'paytirishni bekor qiladi.
m=\frac{2x^{2}}{\left(3x-1\right)^{2}}
2x^{2} ni 9x^{2}-6x+1 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}