x uchun yechish (complex solution)
x=-\sqrt{11}i+5\approx 5-3,31662479i
x=5+\sqrt{11}i\approx 5+3,31662479i
Grafik
Baham ko'rish
Klipbordga nusxa olish
13x-36-x^{2}=3x
9-x ga x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
13x-36-x^{2}-3x=0
Ikkala tarafdan 3x ni ayirish.
10x-36-x^{2}=0
10x ni olish uchun 13x va -3x ni birlashtirish.
-x^{2}+10x-36=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 10 ni b va -36 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100+4\left(-36\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{100-144}}{2\left(-1\right)}
4 ni -36 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{-44}}{2\left(-1\right)}
100 ni -144 ga qo'shish.
x=\frac{-10±2\sqrt{11}i}{2\left(-1\right)}
-44 ning kvadrat ildizini chiqarish.
x=\frac{-10±2\sqrt{11}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{-10+2\sqrt{11}i}{-2}
x=\frac{-10±2\sqrt{11}i}{-2} tenglamasini yeching, bunda ± musbat. -10 ni 2i\sqrt{11} ga qo'shish.
x=-\sqrt{11}i+5
-10+2i\sqrt{11} ni -2 ga bo'lish.
x=\frac{-2\sqrt{11}i-10}{-2}
x=\frac{-10±2\sqrt{11}i}{-2} tenglamasini yeching, bunda ± manfiy. -10 dan 2i\sqrt{11} ni ayirish.
x=5+\sqrt{11}i
-10-2i\sqrt{11} ni -2 ga bo'lish.
x=-\sqrt{11}i+5 x=5+\sqrt{11}i
Tenglama yechildi.
13x-36-x^{2}=3x
9-x ga x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
13x-36-x^{2}-3x=0
Ikkala tarafdan 3x ni ayirish.
10x-36-x^{2}=0
10x ni olish uchun 13x va -3x ni birlashtirish.
10x-x^{2}=36
36 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-x^{2}+10x=36
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+10x}{-1}=\frac{36}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{10}{-1}x=\frac{36}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-10x=\frac{36}{-1}
10 ni -1 ga bo'lish.
x^{2}-10x=-36
36 ni -1 ga bo'lish.
x^{2}-10x+\left(-5\right)^{2}=-36+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=-36+25
-5 kvadratini chiqarish.
x^{2}-10x+25=-11
-36 ni 25 ga qo'shish.
\left(x-5\right)^{2}=-11
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-11}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=\sqrt{11}i x-5=-\sqrt{11}i
Qisqartirish.
x=5+\sqrt{11}i x=-\sqrt{11}i+5
5 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}