x uchun yechish
x\in \left(\frac{9-2\sqrt{2}}{5},\frac{2\sqrt{2}+9}{5}\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
81-90x+25x^{2}+2\left(9-5x\right)^{2}-24<0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(9-5x\right)^{2} kengaytirilishi uchun ishlating.
81-90x+25x^{2}+2\left(81-90x+25x^{2}\right)-24<0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(9-5x\right)^{2} kengaytirilishi uchun ishlating.
81-90x+25x^{2}+162-180x+50x^{2}-24<0
2 ga 81-90x+25x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
243-90x+25x^{2}-180x+50x^{2}-24<0
243 olish uchun 81 va 162'ni qo'shing.
243-270x+25x^{2}+50x^{2}-24<0
-270x ni olish uchun -90x va -180x ni birlashtirish.
243-270x+75x^{2}-24<0
75x^{2} ni olish uchun 25x^{2} va 50x^{2} ni birlashtirish.
219-270x+75x^{2}<0
219 olish uchun 243 dan 24 ni ayirish.
219-270x+75x^{2}=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-270\right)±\sqrt{\left(-270\right)^{2}-4\times 75\times 219}}{2\times 75}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 75 ni, b uchun -270 ni va c uchun 219 ni ayiring.
x=\frac{270±60\sqrt{2}}{150}
Hisoblarni amalga oshiring.
x=\frac{2\sqrt{2}+9}{5} x=\frac{9-2\sqrt{2}}{5}
x=\frac{270±60\sqrt{2}}{150} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
75\left(x-\frac{2\sqrt{2}+9}{5}\right)\left(x-\frac{9-2\sqrt{2}}{5}\right)<0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
x-\frac{2\sqrt{2}+9}{5}>0 x-\frac{9-2\sqrt{2}}{5}<0
Koʻpaytma manfiy boʻlishi uchun x-\frac{2\sqrt{2}+9}{5} va x-\frac{9-2\sqrt{2}}{5} qarama-qarshi belgilar boʻlishi kerak. x-\frac{2\sqrt{2}+9}{5} musbat, x-\frac{9-2\sqrt{2}}{5} manfiy boʻlganda, yechimni toping.
x\in \emptyset
Bu har qanday x uchun xato.
x-\frac{9-2\sqrt{2}}{5}>0 x-\frac{2\sqrt{2}+9}{5}<0
x-\frac{9-2\sqrt{2}}{5} musbat, x-\frac{2\sqrt{2}+9}{5} manfiy boʻlganda, yechimni toping.
x\in \left(\frac{9-2\sqrt{2}}{5},\frac{2\sqrt{2}+9}{5}\right)
Ikkala tengsizlikning mos yechimi – x\in \left(\frac{9-2\sqrt{2}}{5},\frac{2\sqrt{2}+9}{5}\right).
x\in \left(\frac{9-2\sqrt{2}}{5},\frac{2\sqrt{2}+9}{5}\right)
Oxirgi yechim olingan yechimlarning birlashmasidir.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}