Baholash
9h^{3}+2h^{2}+10h+5
h ga nisbatan hosilani topish
27h^{2}+4h+10
Baham ko'rish
Klipbordga nusxa olish
9h^{3}+2h^{2}+3h+5+7h
9h^{3} ni olish uchun 8h^{3} va h^{3} ni birlashtirish.
9h^{3}+2h^{2}+10h+5
10h ni olish uchun 3h va 7h ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}h}(9h^{3}+2h^{2}+3h+5+7h)
9h^{3} ni olish uchun 8h^{3} va h^{3} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}h}(9h^{3}+2h^{2}+10h+5)
10h ni olish uchun 3h va 7h ni birlashtirish.
3\times 9h^{3-1}+2\times 2h^{2-1}+10h^{1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
27h^{3-1}+2\times 2h^{2-1}+10h^{1-1}
3 ni 9 marotabaga ko'paytirish.
27h^{2}+2\times 2h^{2-1}+10h^{1-1}
3 dan 1 ni ayirish.
27h^{2}+4h^{2-1}+10h^{1-1}
2 ni 2 marotabaga ko'paytirish.
27h^{2}+4h^{1}+10h^{1-1}
2 dan 1 ni ayirish.
27h^{2}+4h^{1}+10h^{0}
1 dan 1 ni ayirish.
27h^{2}+4h+10h^{0}
Har qanday t sharti uchun t^{1}=t.
27h^{2}+4h+10\times 1
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
27h^{2}+4h+10
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}