Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

36x^{2}-132x+121=12x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(6x-11\right)^{2} kengaytirilishi uchun ishlating.
36x^{2}-132x+121-12x=0
Ikkala tarafdan 12x ni ayirish.
36x^{2}-144x+121=0
-144x ni olish uchun -132x va -12x ni birlashtirish.
x=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\times 36\times 121}}{2\times 36}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 36 ni a, -144 ni b va 121 ni c bilan almashtiring.
x=\frac{-\left(-144\right)±\sqrt{20736-4\times 36\times 121}}{2\times 36}
-144 kvadratini chiqarish.
x=\frac{-\left(-144\right)±\sqrt{20736-144\times 121}}{2\times 36}
-4 ni 36 marotabaga ko'paytirish.
x=\frac{-\left(-144\right)±\sqrt{20736-17424}}{2\times 36}
-144 ni 121 marotabaga ko'paytirish.
x=\frac{-\left(-144\right)±\sqrt{3312}}{2\times 36}
20736 ni -17424 ga qo'shish.
x=\frac{-\left(-144\right)±12\sqrt{23}}{2\times 36}
3312 ning kvadrat ildizini chiqarish.
x=\frac{144±12\sqrt{23}}{2\times 36}
-144 ning teskarisi 144 ga teng.
x=\frac{144±12\sqrt{23}}{72}
2 ni 36 marotabaga ko'paytirish.
x=\frac{12\sqrt{23}+144}{72}
x=\frac{144±12\sqrt{23}}{72} tenglamasini yeching, bunda ± musbat. 144 ni 12\sqrt{23} ga qo'shish.
x=\frac{\sqrt{23}}{6}+2
144+12\sqrt{23} ni 72 ga bo'lish.
x=\frac{144-12\sqrt{23}}{72}
x=\frac{144±12\sqrt{23}}{72} tenglamasini yeching, bunda ± manfiy. 144 dan 12\sqrt{23} ni ayirish.
x=-\frac{\sqrt{23}}{6}+2
144-12\sqrt{23} ni 72 ga bo'lish.
x=\frac{\sqrt{23}}{6}+2 x=-\frac{\sqrt{23}}{6}+2
Tenglama yechildi.
36x^{2}-132x+121=12x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(6x-11\right)^{2} kengaytirilishi uchun ishlating.
36x^{2}-132x+121-12x=0
Ikkala tarafdan 12x ni ayirish.
36x^{2}-144x+121=0
-144x ni olish uchun -132x va -12x ni birlashtirish.
36x^{2}-144x=-121
Ikkala tarafdan 121 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{36x^{2}-144x}{36}=-\frac{121}{36}
Ikki tarafini 36 ga bo‘ling.
x^{2}+\left(-\frac{144}{36}\right)x=-\frac{121}{36}
36 ga bo'lish 36 ga ko'paytirishni bekor qiladi.
x^{2}-4x=-\frac{121}{36}
-144 ni 36 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=-\frac{121}{36}+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=-\frac{121}{36}+4
-2 kvadratini chiqarish.
x^{2}-4x+4=\frac{23}{36}
-\frac{121}{36} ni 4 ga qo'shish.
\left(x-2\right)^{2}=\frac{23}{36}
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{23}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=\frac{\sqrt{23}}{6} x-2=-\frac{\sqrt{23}}{6}
Qisqartirish.
x=\frac{\sqrt{23}}{6}+2 x=-\frac{\sqrt{23}}{6}+2
2 ni tenglamaning ikkala tarafiga qo'shish.