x uchun yechish
x=\frac{\sqrt{23}}{6}+2\approx 2,799305254
x=-\frac{\sqrt{23}}{6}+2\approx 1,200694746
Grafik
Baham ko'rish
Klipbordga nusxa olish
36x^{2}-132x+121=12x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(6x-11\right)^{2} kengaytirilishi uchun ishlating.
36x^{2}-132x+121-12x=0
Ikkala tarafdan 12x ni ayirish.
36x^{2}-144x+121=0
-144x ni olish uchun -132x va -12x ni birlashtirish.
x=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\times 36\times 121}}{2\times 36}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 36 ni a, -144 ni b va 121 ni c bilan almashtiring.
x=\frac{-\left(-144\right)±\sqrt{20736-4\times 36\times 121}}{2\times 36}
-144 kvadratini chiqarish.
x=\frac{-\left(-144\right)±\sqrt{20736-144\times 121}}{2\times 36}
-4 ni 36 marotabaga ko'paytirish.
x=\frac{-\left(-144\right)±\sqrt{20736-17424}}{2\times 36}
-144 ni 121 marotabaga ko'paytirish.
x=\frac{-\left(-144\right)±\sqrt{3312}}{2\times 36}
20736 ni -17424 ga qo'shish.
x=\frac{-\left(-144\right)±12\sqrt{23}}{2\times 36}
3312 ning kvadrat ildizini chiqarish.
x=\frac{144±12\sqrt{23}}{2\times 36}
-144 ning teskarisi 144 ga teng.
x=\frac{144±12\sqrt{23}}{72}
2 ni 36 marotabaga ko'paytirish.
x=\frac{12\sqrt{23}+144}{72}
x=\frac{144±12\sqrt{23}}{72} tenglamasini yeching, bunda ± musbat. 144 ni 12\sqrt{23} ga qo'shish.
x=\frac{\sqrt{23}}{6}+2
144+12\sqrt{23} ni 72 ga bo'lish.
x=\frac{144-12\sqrt{23}}{72}
x=\frac{144±12\sqrt{23}}{72} tenglamasini yeching, bunda ± manfiy. 144 dan 12\sqrt{23} ni ayirish.
x=-\frac{\sqrt{23}}{6}+2
144-12\sqrt{23} ni 72 ga bo'lish.
x=\frac{\sqrt{23}}{6}+2 x=-\frac{\sqrt{23}}{6}+2
Tenglama yechildi.
36x^{2}-132x+121=12x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(6x-11\right)^{2} kengaytirilishi uchun ishlating.
36x^{2}-132x+121-12x=0
Ikkala tarafdan 12x ni ayirish.
36x^{2}-144x+121=0
-144x ni olish uchun -132x va -12x ni birlashtirish.
36x^{2}-144x=-121
Ikkala tarafdan 121 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{36x^{2}-144x}{36}=-\frac{121}{36}
Ikki tarafini 36 ga bo‘ling.
x^{2}+\left(-\frac{144}{36}\right)x=-\frac{121}{36}
36 ga bo'lish 36 ga ko'paytirishni bekor qiladi.
x^{2}-4x=-\frac{121}{36}
-144 ni 36 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=-\frac{121}{36}+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=-\frac{121}{36}+4
-2 kvadratini chiqarish.
x^{2}-4x+4=\frac{23}{36}
-\frac{121}{36} ni 4 ga qo'shish.
\left(x-2\right)^{2}=\frac{23}{36}
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{23}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=\frac{\sqrt{23}}{6} x-2=-\frac{\sqrt{23}}{6}
Qisqartirish.
x=\frac{\sqrt{23}}{6}+2 x=-\frac{\sqrt{23}}{6}+2
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}