Baholash
4x^{4}+3x^{3}+3x-5
x ga nisbatan hosilani topish
16x^{3}+9x^{2}+3
Grafik
Viktorina
Polynomial
( 6 x ^ { 4 } + 2 x ^ { 3 } - x + 5 ) + ( - 2 x ^ { 4 } + x ^ { 3 } + 4 x - 10 )
Baham ko'rish
Klipbordga nusxa olish
4x^{4}+2x^{3}-x+5+x^{3}+4x-10
4x^{4} ni olish uchun 6x^{4} va -2x^{4} ni birlashtirish.
4x^{4}+3x^{3}-x+5+4x-10
3x^{3} ni olish uchun 2x^{3} va x^{3} ni birlashtirish.
4x^{4}+3x^{3}+3x+5-10
3x ni olish uchun -x va 4x ni birlashtirish.
4x^{4}+3x^{3}+3x-5
-5 olish uchun 5 dan 10 ni ayirish.
\frac{\mathrm{d}}{\mathrm{d}x}(4x^{4}+2x^{3}-x+5+x^{3}+4x-10)
4x^{4} ni olish uchun 6x^{4} va -2x^{4} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(4x^{4}+3x^{3}-x+5+4x-10)
3x^{3} ni olish uchun 2x^{3} va x^{3} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(4x^{4}+3x^{3}+3x+5-10)
3x ni olish uchun -x va 4x ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(4x^{4}+3x^{3}+3x-5)
-5 olish uchun 5 dan 10 ni ayirish.
4\times 4x^{4-1}+3\times 3x^{3-1}+3x^{1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
16x^{4-1}+3\times 3x^{3-1}+3x^{1-1}
4 ni 4 marotabaga ko'paytirish.
16x^{3}+3\times 3x^{3-1}+3x^{1-1}
4 dan 1 ni ayirish.
16x^{3}+9x^{3-1}+3x^{1-1}
3 ni 3 marotabaga ko'paytirish.
16x^{3}+9x^{2}+3x^{1-1}
3 dan 1 ni ayirish.
16x^{3}+9x^{2}+3x^{0}
1 dan 1 ni ayirish.
16x^{3}+9x^{2}+3\times 1
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
16x^{3}+9x^{2}+3
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}