Baholash
10w^{2}-4w-3
Omil
10\left(w-\left(-\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)\left(w-\left(\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)
Baham ko'rish
Klipbordga nusxa olish
10w^{2}-w-5-3w+2
10w^{2} ni olish uchun 6w^{2} va 4w^{2} ni birlashtirish.
10w^{2}-4w-5+2
-4w ni olish uchun -w va -3w ni birlashtirish.
10w^{2}-4w-3
-3 olish uchun -5 va 2'ni qo'shing.
factor(10w^{2}-w-5-3w+2)
10w^{2} ni olish uchun 6w^{2} va 4w^{2} ni birlashtirish.
factor(10w^{2}-4w-5+2)
-4w ni olish uchun -w va -3w ni birlashtirish.
factor(10w^{2}-4w-3)
-3 olish uchun -5 va 2'ni qo'shing.
10w^{2}-4w-3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
w=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 10\left(-3\right)}}{2\times 10}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
w=\frac{-\left(-4\right)±\sqrt{16-4\times 10\left(-3\right)}}{2\times 10}
-4 kvadratini chiqarish.
w=\frac{-\left(-4\right)±\sqrt{16-40\left(-3\right)}}{2\times 10}
-4 ni 10 marotabaga ko'paytirish.
w=\frac{-\left(-4\right)±\sqrt{16+120}}{2\times 10}
-40 ni -3 marotabaga ko'paytirish.
w=\frac{-\left(-4\right)±\sqrt{136}}{2\times 10}
16 ni 120 ga qo'shish.
w=\frac{-\left(-4\right)±2\sqrt{34}}{2\times 10}
136 ning kvadrat ildizini chiqarish.
w=\frac{4±2\sqrt{34}}{2\times 10}
-4 ning teskarisi 4 ga teng.
w=\frac{4±2\sqrt{34}}{20}
2 ni 10 marotabaga ko'paytirish.
w=\frac{2\sqrt{34}+4}{20}
w=\frac{4±2\sqrt{34}}{20} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{34} ga qo'shish.
w=\frac{\sqrt{34}}{10}+\frac{1}{5}
4+2\sqrt{34} ni 20 ga bo'lish.
w=\frac{4-2\sqrt{34}}{20}
w=\frac{4±2\sqrt{34}}{20} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{34} ni ayirish.
w=-\frac{\sqrt{34}}{10}+\frac{1}{5}
4-2\sqrt{34} ni 20 ga bo'lish.
10w^{2}-4w-3=10\left(w-\left(\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)\left(w-\left(-\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1}{5}+\frac{\sqrt{34}}{10} ga va x_{2} uchun \frac{1}{5}-\frac{\sqrt{34}}{10} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}