Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

10w^{2}-w-5-3w+2
10w^{2} ni olish uchun 6w^{2} va 4w^{2} ni birlashtirish.
10w^{2}-4w-5+2
-4w ni olish uchun -w va -3w ni birlashtirish.
10w^{2}-4w-3
-3 olish uchun -5 va 2'ni qo'shing.
factor(10w^{2}-w-5-3w+2)
10w^{2} ni olish uchun 6w^{2} va 4w^{2} ni birlashtirish.
factor(10w^{2}-4w-5+2)
-4w ni olish uchun -w va -3w ni birlashtirish.
factor(10w^{2}-4w-3)
-3 olish uchun -5 va 2'ni qo'shing.
10w^{2}-4w-3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
w=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 10\left(-3\right)}}{2\times 10}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
w=\frac{-\left(-4\right)±\sqrt{16-4\times 10\left(-3\right)}}{2\times 10}
-4 kvadratini chiqarish.
w=\frac{-\left(-4\right)±\sqrt{16-40\left(-3\right)}}{2\times 10}
-4 ni 10 marotabaga ko'paytirish.
w=\frac{-\left(-4\right)±\sqrt{16+120}}{2\times 10}
-40 ni -3 marotabaga ko'paytirish.
w=\frac{-\left(-4\right)±\sqrt{136}}{2\times 10}
16 ni 120 ga qo'shish.
w=\frac{-\left(-4\right)±2\sqrt{34}}{2\times 10}
136 ning kvadrat ildizini chiqarish.
w=\frac{4±2\sqrt{34}}{2\times 10}
-4 ning teskarisi 4 ga teng.
w=\frac{4±2\sqrt{34}}{20}
2 ni 10 marotabaga ko'paytirish.
w=\frac{2\sqrt{34}+4}{20}
w=\frac{4±2\sqrt{34}}{20} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{34} ga qo'shish.
w=\frac{\sqrt{34}}{10}+\frac{1}{5}
4+2\sqrt{34} ni 20 ga bo'lish.
w=\frac{4-2\sqrt{34}}{20}
w=\frac{4±2\sqrt{34}}{20} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{34} ni ayirish.
w=-\frac{\sqrt{34}}{10}+\frac{1}{5}
4-2\sqrt{34} ni 20 ga bo'lish.
10w^{2}-4w-3=10\left(w-\left(\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)\left(w-\left(-\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1}{5}+\frac{\sqrt{34}}{10} ga va x_{2} uchun \frac{1}{5}-\frac{\sqrt{34}}{10} ga bo‘ling.