x uchun yechish
x=10
x=30
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(10+x\right)\left(500-10x\right)=8000
10 olish uchun 50 dan 40 ni ayirish.
5000+400x-10x^{2}=8000
10+x ga 500-10x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5000+400x-10x^{2}-8000=0
Ikkala tarafdan 8000 ni ayirish.
-3000+400x-10x^{2}=0
-3000 olish uchun 5000 dan 8000 ni ayirish.
-10x^{2}+400x-3000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-400±\sqrt{400^{2}-4\left(-10\right)\left(-3000\right)}}{2\left(-10\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -10 ni a, 400 ni b va -3000 ni c bilan almashtiring.
x=\frac{-400±\sqrt{160000-4\left(-10\right)\left(-3000\right)}}{2\left(-10\right)}
400 kvadratini chiqarish.
x=\frac{-400±\sqrt{160000+40\left(-3000\right)}}{2\left(-10\right)}
-4 ni -10 marotabaga ko'paytirish.
x=\frac{-400±\sqrt{160000-120000}}{2\left(-10\right)}
40 ni -3000 marotabaga ko'paytirish.
x=\frac{-400±\sqrt{40000}}{2\left(-10\right)}
160000 ni -120000 ga qo'shish.
x=\frac{-400±200}{2\left(-10\right)}
40000 ning kvadrat ildizini chiqarish.
x=\frac{-400±200}{-20}
2 ni -10 marotabaga ko'paytirish.
x=-\frac{200}{-20}
x=\frac{-400±200}{-20} tenglamasini yeching, bunda ± musbat. -400 ni 200 ga qo'shish.
x=10
-200 ni -20 ga bo'lish.
x=-\frac{600}{-20}
x=\frac{-400±200}{-20} tenglamasini yeching, bunda ± manfiy. -400 dan 200 ni ayirish.
x=30
-600 ni -20 ga bo'lish.
x=10 x=30
Tenglama yechildi.
\left(10+x\right)\left(500-10x\right)=8000
10 olish uchun 50 dan 40 ni ayirish.
5000+400x-10x^{2}=8000
10+x ga 500-10x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
400x-10x^{2}=8000-5000
Ikkala tarafdan 5000 ni ayirish.
400x-10x^{2}=3000
3000 olish uchun 8000 dan 5000 ni ayirish.
-10x^{2}+400x=3000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-10x^{2}+400x}{-10}=\frac{3000}{-10}
Ikki tarafini -10 ga bo‘ling.
x^{2}+\frac{400}{-10}x=\frac{3000}{-10}
-10 ga bo'lish -10 ga ko'paytirishni bekor qiladi.
x^{2}-40x=\frac{3000}{-10}
400 ni -10 ga bo'lish.
x^{2}-40x=-300
3000 ni -10 ga bo'lish.
x^{2}-40x+\left(-20\right)^{2}=-300+\left(-20\right)^{2}
-40 ni bo‘lish, x shartining koeffitsienti, 2 ga -20 olish uchun. Keyin, -20 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-40x+400=-300+400
-20 kvadratini chiqarish.
x^{2}-40x+400=100
-300 ni 400 ga qo'shish.
\left(x-20\right)^{2}=100
x^{2}-40x+400 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-20\right)^{2}}=\sqrt{100}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-20=10 x-20=-10
Qisqartirish.
x=30 x=10
20 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}