x uchun yechish
x = \frac{13}{5} = 2\frac{3}{5} = 2,6
x=-1
Grafik
Baham ko'rish
Klipbordga nusxa olish
25x^{2}-40x+16=81
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-4\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-40x+16-81=0
Ikkala tarafdan 81 ni ayirish.
25x^{2}-40x-65=0
-65 olish uchun 16 dan 81 ni ayirish.
5x^{2}-8x-13=0
Ikki tarafini 5 ga bo‘ling.
a+b=-8 ab=5\left(-13\right)=-65
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 5x^{2}+ax+bx-13 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-65 5,-13
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -65-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-65=-64 5-13=-8
Har bir juftlik yigʻindisini hisoblang.
a=-13 b=5
Yechim – -8 yigʻindisini beruvchi juftlik.
\left(5x^{2}-13x\right)+\left(5x-13\right)
5x^{2}-8x-13 ni \left(5x^{2}-13x\right)+\left(5x-13\right) sifatida qaytadan yozish.
x\left(5x-13\right)+5x-13
5x^{2}-13x ichida x ni ajrating.
\left(5x-13\right)\left(x+1\right)
Distributiv funktsiyasidan foydalangan holda 5x-13 umumiy terminini chiqaring.
x=\frac{13}{5} x=-1
Tenglamani yechish uchun 5x-13=0 va x+1=0 ni yeching.
25x^{2}-40x+16=81
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-4\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-40x+16-81=0
Ikkala tarafdan 81 ni ayirish.
25x^{2}-40x-65=0
-65 olish uchun 16 dan 81 ni ayirish.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 25\left(-65\right)}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, -40 ni b va -65 ni c bilan almashtiring.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 25\left(-65\right)}}{2\times 25}
-40 kvadratini chiqarish.
x=\frac{-\left(-40\right)±\sqrt{1600-100\left(-65\right)}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
x=\frac{-\left(-40\right)±\sqrt{1600+6500}}{2\times 25}
-100 ni -65 marotabaga ko'paytirish.
x=\frac{-\left(-40\right)±\sqrt{8100}}{2\times 25}
1600 ni 6500 ga qo'shish.
x=\frac{-\left(-40\right)±90}{2\times 25}
8100 ning kvadrat ildizini chiqarish.
x=\frac{40±90}{2\times 25}
-40 ning teskarisi 40 ga teng.
x=\frac{40±90}{50}
2 ni 25 marotabaga ko'paytirish.
x=\frac{130}{50}
x=\frac{40±90}{50} tenglamasini yeching, bunda ± musbat. 40 ni 90 ga qo'shish.
x=\frac{13}{5}
\frac{130}{50} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{50}{50}
x=\frac{40±90}{50} tenglamasini yeching, bunda ± manfiy. 40 dan 90 ni ayirish.
x=-1
-50 ni 50 ga bo'lish.
x=\frac{13}{5} x=-1
Tenglama yechildi.
25x^{2}-40x+16=81
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-4\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-40x=81-16
Ikkala tarafdan 16 ni ayirish.
25x^{2}-40x=65
65 olish uchun 81 dan 16 ni ayirish.
\frac{25x^{2}-40x}{25}=\frac{65}{25}
Ikki tarafini 25 ga bo‘ling.
x^{2}+\left(-\frac{40}{25}\right)x=\frac{65}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{8}{5}x=\frac{65}{25}
\frac{-40}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{8}{5}x=\frac{13}{5}
\frac{65}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=\frac{13}{5}+\left(-\frac{4}{5}\right)^{2}
-\frac{8}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{4}{5} olish uchun. Keyin, -\frac{4}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{13}{5}+\frac{16}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{4}{5} kvadratini chiqarish.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{81}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{13}{5} ni \frac{16}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{4}{5}\right)^{2}=\frac{81}{25}
x^{2}-\frac{8}{5}x+\frac{16}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{\frac{81}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{4}{5}=\frac{9}{5} x-\frac{4}{5}=-\frac{9}{5}
Qisqartirish.
x=\frac{13}{5} x=-1
\frac{4}{5} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}