Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

25x^{2}-20x+4-\left(3x-3\right)^{2}=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-2\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x+4-\left(9x^{2}-18x+9\right)=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-3\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x+4-9x^{2}+18x-9=0
9x^{2}-18x+9 teskarisini topish uchun har birining teskarisini toping.
16x^{2}-20x+4+18x-9=0
16x^{2} ni olish uchun 25x^{2} va -9x^{2} ni birlashtirish.
16x^{2}-2x+4-9=0
-2x ni olish uchun -20x va 18x ni birlashtirish.
16x^{2}-2x-5=0
-5 olish uchun 4 dan 9 ni ayirish.
a+b=-2 ab=16\left(-5\right)=-80
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 16x^{2}+ax+bx-5 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-80 2,-40 4,-20 5,-16 8,-10
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -80-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-80=-79 2-40=-38 4-20=-16 5-16=-11 8-10=-2
Har bir juftlik yigʻindisini hisoblang.
a=-10 b=8
Yechim – -2 yigʻindisini beruvchi juftlik.
\left(16x^{2}-10x\right)+\left(8x-5\right)
16x^{2}-2x-5 ni \left(16x^{2}-10x\right)+\left(8x-5\right) sifatida qaytadan yozish.
2x\left(8x-5\right)+8x-5
16x^{2}-10x ichida 2x ni ajrating.
\left(8x-5\right)\left(2x+1\right)
Distributiv funktsiyasidan foydalangan holda 8x-5 umumiy terminini chiqaring.
x=\frac{5}{8} x=-\frac{1}{2}
Tenglamani yechish uchun 8x-5=0 va 2x+1=0 ni yeching.
25x^{2}-20x+4-\left(3x-3\right)^{2}=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-2\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x+4-\left(9x^{2}-18x+9\right)=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-3\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x+4-9x^{2}+18x-9=0
9x^{2}-18x+9 teskarisini topish uchun har birining teskarisini toping.
16x^{2}-20x+4+18x-9=0
16x^{2} ni olish uchun 25x^{2} va -9x^{2} ni birlashtirish.
16x^{2}-2x+4-9=0
-2x ni olish uchun -20x va 18x ni birlashtirish.
16x^{2}-2x-5=0
-5 olish uchun 4 dan 9 ni ayirish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 16\left(-5\right)}}{2\times 16}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 16 ni a, -2 ni b va -5 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 16\left(-5\right)}}{2\times 16}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4-64\left(-5\right)}}{2\times 16}
-4 ni 16 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4+320}}{2\times 16}
-64 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{324}}{2\times 16}
4 ni 320 ga qo'shish.
x=\frac{-\left(-2\right)±18}{2\times 16}
324 ning kvadrat ildizini chiqarish.
x=\frac{2±18}{2\times 16}
-2 ning teskarisi 2 ga teng.
x=\frac{2±18}{32}
2 ni 16 marotabaga ko'paytirish.
x=\frac{20}{32}
x=\frac{2±18}{32} tenglamasini yeching, bunda ± musbat. 2 ni 18 ga qo'shish.
x=\frac{5}{8}
\frac{20}{32} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{16}{32}
x=\frac{2±18}{32} tenglamasini yeching, bunda ± manfiy. 2 dan 18 ni ayirish.
x=-\frac{1}{2}
\frac{-16}{32} ulushini 16 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{5}{8} x=-\frac{1}{2}
Tenglama yechildi.
25x^{2}-20x+4-\left(3x-3\right)^{2}=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-2\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x+4-\left(9x^{2}-18x+9\right)=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-3\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x+4-9x^{2}+18x-9=0
9x^{2}-18x+9 teskarisini topish uchun har birining teskarisini toping.
16x^{2}-20x+4+18x-9=0
16x^{2} ni olish uchun 25x^{2} va -9x^{2} ni birlashtirish.
16x^{2}-2x+4-9=0
-2x ni olish uchun -20x va 18x ni birlashtirish.
16x^{2}-2x-5=0
-5 olish uchun 4 dan 9 ni ayirish.
16x^{2}-2x=5
5 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{16x^{2}-2x}{16}=\frac{5}{16}
Ikki tarafini 16 ga bo‘ling.
x^{2}+\left(-\frac{2}{16}\right)x=\frac{5}{16}
16 ga bo'lish 16 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{8}x=\frac{5}{16}
\frac{-2}{16} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{8}x+\left(-\frac{1}{16}\right)^{2}=\frac{5}{16}+\left(-\frac{1}{16}\right)^{2}
-\frac{1}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{16} olish uchun. Keyin, -\frac{1}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{8}x+\frac{1}{256}=\frac{5}{16}+\frac{1}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{16} kvadratini chiqarish.
x^{2}-\frac{1}{8}x+\frac{1}{256}=\frac{81}{256}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{16} ni \frac{1}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{16}\right)^{2}=\frac{81}{256}
x^{2}-\frac{1}{8}x+\frac{1}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{16}\right)^{2}}=\sqrt{\frac{81}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{16}=\frac{9}{16} x-\frac{1}{16}=-\frac{9}{16}
Qisqartirish.
x=\frac{5}{8} x=-\frac{1}{2}
\frac{1}{16} ni tenglamaning ikkala tarafiga qo'shish.