x uchun yechish
x=-1
x=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
25x^{2}-20x+4-\left(2x-1\right)\left(2x+1\right)=47+x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-2\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x+4-\left(\left(2x\right)^{2}-1\right)=47+x
Hisoblang: \left(2x-1\right)\left(2x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
25x^{2}-20x+4-\left(2^{2}x^{2}-1\right)=47+x
\left(2x\right)^{2} ni kengaytirish.
25x^{2}-20x+4-\left(4x^{2}-1\right)=47+x
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
25x^{2}-20x+4-4x^{2}+1=47+x
4x^{2}-1 teskarisini topish uchun har birining teskarisini toping.
21x^{2}-20x+4+1=47+x
21x^{2} ni olish uchun 25x^{2} va -4x^{2} ni birlashtirish.
21x^{2}-20x+5=47+x
5 olish uchun 4 va 1'ni qo'shing.
21x^{2}-20x+5-47=x
Ikkala tarafdan 47 ni ayirish.
21x^{2}-20x-42=x
-42 olish uchun 5 dan 47 ni ayirish.
21x^{2}-20x-42-x=0
Ikkala tarafdan x ni ayirish.
21x^{2}-21x-42=0
-21x ni olish uchun -20x va -x ni birlashtirish.
x^{2}-x-2=0
Ikki tarafini 21 ga bo‘ling.
a+b=-1 ab=1\left(-2\right)=-2
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-2 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-2 b=1
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. Faqat bundan juftlik tizim yechimidir.
\left(x^{2}-2x\right)+\left(x-2\right)
x^{2}-x-2 ni \left(x^{2}-2x\right)+\left(x-2\right) sifatida qaytadan yozish.
x\left(x-2\right)+x-2
x^{2}-2x ichida x ni ajrating.
\left(x-2\right)\left(x+1\right)
Distributiv funktsiyasidan foydalangan holda x-2 umumiy terminini chiqaring.
x=2 x=-1
Tenglamani yechish uchun x-2=0 va x+1=0 ni yeching.
25x^{2}-20x+4-\left(2x-1\right)\left(2x+1\right)=47+x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-2\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x+4-\left(\left(2x\right)^{2}-1\right)=47+x
Hisoblang: \left(2x-1\right)\left(2x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
25x^{2}-20x+4-\left(2^{2}x^{2}-1\right)=47+x
\left(2x\right)^{2} ni kengaytirish.
25x^{2}-20x+4-\left(4x^{2}-1\right)=47+x
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
25x^{2}-20x+4-4x^{2}+1=47+x
4x^{2}-1 teskarisini topish uchun har birining teskarisini toping.
21x^{2}-20x+4+1=47+x
21x^{2} ni olish uchun 25x^{2} va -4x^{2} ni birlashtirish.
21x^{2}-20x+5=47+x
5 olish uchun 4 va 1'ni qo'shing.
21x^{2}-20x+5-47=x
Ikkala tarafdan 47 ni ayirish.
21x^{2}-20x-42=x
-42 olish uchun 5 dan 47 ni ayirish.
21x^{2}-20x-42-x=0
Ikkala tarafdan x ni ayirish.
21x^{2}-21x-42=0
-21x ni olish uchun -20x va -x ni birlashtirish.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 21\left(-42\right)}}{2\times 21}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 21 ni a, -21 ni b va -42 ni c bilan almashtiring.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 21\left(-42\right)}}{2\times 21}
-21 kvadratini chiqarish.
x=\frac{-\left(-21\right)±\sqrt{441-84\left(-42\right)}}{2\times 21}
-4 ni 21 marotabaga ko'paytirish.
x=\frac{-\left(-21\right)±\sqrt{441+3528}}{2\times 21}
-84 ni -42 marotabaga ko'paytirish.
x=\frac{-\left(-21\right)±\sqrt{3969}}{2\times 21}
441 ni 3528 ga qo'shish.
x=\frac{-\left(-21\right)±63}{2\times 21}
3969 ning kvadrat ildizini chiqarish.
x=\frac{21±63}{2\times 21}
-21 ning teskarisi 21 ga teng.
x=\frac{21±63}{42}
2 ni 21 marotabaga ko'paytirish.
x=\frac{84}{42}
x=\frac{21±63}{42} tenglamasini yeching, bunda ± musbat. 21 ni 63 ga qo'shish.
x=2
84 ni 42 ga bo'lish.
x=-\frac{42}{42}
x=\frac{21±63}{42} tenglamasini yeching, bunda ± manfiy. 21 dan 63 ni ayirish.
x=-1
-42 ni 42 ga bo'lish.
x=2 x=-1
Tenglama yechildi.
25x^{2}-20x+4-\left(2x-1\right)\left(2x+1\right)=47+x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-2\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x+4-\left(\left(2x\right)^{2}-1\right)=47+x
Hisoblang: \left(2x-1\right)\left(2x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
25x^{2}-20x+4-\left(2^{2}x^{2}-1\right)=47+x
\left(2x\right)^{2} ni kengaytirish.
25x^{2}-20x+4-\left(4x^{2}-1\right)=47+x
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
25x^{2}-20x+4-4x^{2}+1=47+x
4x^{2}-1 teskarisini topish uchun har birining teskarisini toping.
21x^{2}-20x+4+1=47+x
21x^{2} ni olish uchun 25x^{2} va -4x^{2} ni birlashtirish.
21x^{2}-20x+5=47+x
5 olish uchun 4 va 1'ni qo'shing.
21x^{2}-20x+5-x=47
Ikkala tarafdan x ni ayirish.
21x^{2}-21x+5=47
-21x ni olish uchun -20x va -x ni birlashtirish.
21x^{2}-21x=47-5
Ikkala tarafdan 5 ni ayirish.
21x^{2}-21x=42
42 olish uchun 47 dan 5 ni ayirish.
\frac{21x^{2}-21x}{21}=\frac{42}{21}
Ikki tarafini 21 ga bo‘ling.
x^{2}+\left(-\frac{21}{21}\right)x=\frac{42}{21}
21 ga bo'lish 21 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{42}{21}
-21 ni 21 ga bo'lish.
x^{2}-x=2
42 ni 21 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
2 ni \frac{1}{4} ga qo'shish.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Qisqartirish.
x=2 x=-1
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}