x uchun yechish
x=\frac{\sqrt{769}-33}{10}\approx -0,526915075
x=\frac{-\sqrt{769}-33}{10}\approx -6,073084925
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x^{2}+35x+20-2x=4
Ikkala tarafdan 2x ni ayirish.
5x^{2}+33x+20=4
33x ni olish uchun 35x va -2x ni birlashtirish.
5x^{2}+33x+20-4=0
Ikkala tarafdan 4 ni ayirish.
5x^{2}+33x+16=0
16 olish uchun 20 dan 4 ni ayirish.
x=\frac{-33±\sqrt{33^{2}-4\times 5\times 16}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 33 ni b va 16 ni c bilan almashtiring.
x=\frac{-33±\sqrt{1089-4\times 5\times 16}}{2\times 5}
33 kvadratini chiqarish.
x=\frac{-33±\sqrt{1089-20\times 16}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-33±\sqrt{1089-320}}{2\times 5}
-20 ni 16 marotabaga ko'paytirish.
x=\frac{-33±\sqrt{769}}{2\times 5}
1089 ni -320 ga qo'shish.
x=\frac{-33±\sqrt{769}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{\sqrt{769}-33}{10}
x=\frac{-33±\sqrt{769}}{10} tenglamasini yeching, bunda ± musbat. -33 ni \sqrt{769} ga qo'shish.
x=\frac{-\sqrt{769}-33}{10}
x=\frac{-33±\sqrt{769}}{10} tenglamasini yeching, bunda ± manfiy. -33 dan \sqrt{769} ni ayirish.
x=\frac{\sqrt{769}-33}{10} x=\frac{-\sqrt{769}-33}{10}
Tenglama yechildi.
5x^{2}+35x+20-2x=4
Ikkala tarafdan 2x ni ayirish.
5x^{2}+33x+20=4
33x ni olish uchun 35x va -2x ni birlashtirish.
5x^{2}+33x=4-20
Ikkala tarafdan 20 ni ayirish.
5x^{2}+33x=-16
-16 olish uchun 4 dan 20 ni ayirish.
\frac{5x^{2}+33x}{5}=-\frac{16}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{33}{5}x=-\frac{16}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{33}{5}x+\left(\frac{33}{10}\right)^{2}=-\frac{16}{5}+\left(\frac{33}{10}\right)^{2}
\frac{33}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{33}{10} olish uchun. Keyin, \frac{33}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{33}{5}x+\frac{1089}{100}=-\frac{16}{5}+\frac{1089}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{33}{10} kvadratini chiqarish.
x^{2}+\frac{33}{5}x+\frac{1089}{100}=\frac{769}{100}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{16}{5} ni \frac{1089}{100} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{33}{10}\right)^{2}=\frac{769}{100}
x^{2}+\frac{33}{5}x+\frac{1089}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{33}{10}\right)^{2}}=\sqrt{\frac{769}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{33}{10}=\frac{\sqrt{769}}{10} x+\frac{33}{10}=-\frac{\sqrt{769}}{10}
Qisqartirish.
x=\frac{\sqrt{769}-33}{10} x=\frac{-\sqrt{769}-33}{10}
Tenglamaning ikkala tarafidan \frac{33}{10} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}