b uchun yechish
\left\{\begin{matrix}b=-\frac{5cx^{2}-10x^{2}+5dx+9x+9}{cx+d}\text{, }&d\neq -cx\\b\in \mathrm{R}\text{, }&\left(x=\frac{3}{2}\text{ and }c=-\frac{2d}{3}\right)\text{ or }\left(x=-\frac{3}{5}\text{ and }c=\frac{5d}{3}\right)\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
5cx^{2}+5xd+bcx+bd=10x^{2}-9x-9
5x+b ga cx+d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5xd+bcx+bd=10x^{2}-9x-9-5cx^{2}
Ikkala tarafdan 5cx^{2} ni ayirish.
bcx+bd=10x^{2}-9x-9-5cx^{2}-5xd
Ikkala tarafdan 5xd ni ayirish.
\left(cx+d\right)b=10x^{2}-9x-9-5cx^{2}-5xd
b'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(cx+d\right)b=-5cx^{2}+10x^{2}-5dx-9x-9
Tenglama standart shaklda.
\frac{\left(cx+d\right)b}{cx+d}=\frac{-5cx^{2}+10x^{2}-5dx-9x-9}{cx+d}
Ikki tarafini cx+d ga bo‘ling.
b=\frac{-5cx^{2}+10x^{2}-5dx-9x-9}{cx+d}
cx+d ga bo'lish cx+d ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}